
An adaptive large neighborhood search with path relinking for a class of

vehicle-routing problems with simultaneous pickup and delivery

Julian Hof and Michael Schneider

Technical Report BISOR-01/2017

Julian Hof

Chair of Business Information Systems and Operations Research

University of Kaiserslautern, Germany

julian.hof@wiwi.uni-kl.de

Michael Schneider

Deutsche Post Chair – Optimization of Distribution Networks

RWTH Aachen University, Germany

schneider@dpo.rwth-aachen.de

Abstract

We study a class of vehicle-routing problems (VRP) with simultaneous pickup and delivery

(VRPSPD). In VRPSPDs, each customer may require a certain quantity of goods delivered from

the depot and a quantity of goods to be picked up and returned to the depot. Besides the standard

VRPSPD, we address (i) the VRPSPD with time limit (VRPSPDTL), which imposes a time limit

on the routes of the transportation vehicles, (ii) the VRPSPD with time windows (VRPSPDTW),

which takes customer time windows into account, (iii) the VRP with divisible deliveries and pickups

(VRPDDP), which allows for fulfilling the delivery and pickup requests of each customer in two

separate visits, and (iv) the previously unstudied VRPDDP with time windows (VRPDDPTW).

We develop a hybrid heuristic solution method which combines an adaptive large neighborhood

search algorithm with a path relinking approach, called ALNS-PR, and we demonstrate the com-

petitiveness of our algorithm on benchmark instances proposed in the literature.

Keywords: vehicle routing, simultaneous pickup and delivery, large neighborhood search, path relinking

1 Introduction

In this paper, we study a class of vehicle-routing problems (VRP) with simultaneous pickup and

delivery (VRPSPD) where customers may require (i) delivery service of goods originating at the

depot, and (ii) pickup service for goods which need to be returned to the depot. VRPSPDs arise,

for instance, in the context of reverse logistics, defined as the process of planning, implementing, and

controlling the flow of, e.g., raw materials or finished goods from the point of consumption to the

point of origin for the purpose of recapturing value or proper disposal by The Council of Logistics

Management (Stock 1992). In particular, this paper is motivated by a practical application occurring

at DHL Freight in Sweden, in which customers requiring bulky goods to be delivered and to be picked

up need to be served on a daily basis. In a first step, we aim at developing a solution method that

is flexible enough to address the VRPSPD and its variants from the literature, and that provides

competitive results on these problems.

In addition to the standard VRPSPD, we investigate (i) the VRPSPD with time limit (VRP-

SPDTL), which imposes a maximum duration on the vehicle routes, (ii) the VRPSPD with time

windows (VRPSPDTW), where customers are associated with time intervals in which their service

must start, (iii) the VRP with divisible deliveries and pickups (VRPDDP), which allows to satisfy

a customer’s pickup and delivery requests in two separate visits, and (iv) the previously unstudied

VRPDDP with time windows (VRPDDPTW).

Because the standard VRPSPD and its variants extend the NP-hard Capacitated VRP (CVRP),

heuristic solution methods are a suitable choice for solving larger problem instances of practical rele-

vance in short computation time.

Several heuristics have been proposed for the VRPSPD. The most successful ones are the par-

allel iterated local search algorithm by Subramanian et al. (2010), that makes use of the variable

neighborhood descent paradigm with random neighborhood ordering and is embedded in a multi-start

framework, the approach of Zachariadis et al. (2010), which is characterized by a memory structure to

store and recombine promising vertex sequences, the iterated local search of Subramanian et al. (2013)

that is combined with a set partitioning approach, the unified hybrid genetic search by Vidal et al.

(2014), and the variable neighborhood search (VNS) algorithm extended by a perturbation mechanism

proposed by Polat et al. (2015). The approaches of Subramanian et al. (2013) and Polat et al. (2015)

are also the best-performing heuristics for the VRPSPDTL.

Wang and Chen (2012) develop a co-evolution genetic algorithm which is evaluated on VRP-

SPDTW instances that are derived from instances for the VRP with time windows (VRPTW). Wang

et al. (2015) are able to improve on numerous results reported by Wang and Chen (2012) using a

parallel simulated annealing (SA) algorithm.

Nagy et al. (2015) introduce the VRPDDP and use a reactive tabu search algorithm to investigate

the conditions under which the division of customer demands is beneficial. Recently, Polat (2017)

presented cooperative VNS, a parallel approach based on the VNS paradigm for the VRPDDP, which

is able to obtain new best solutions for the large majority of the instances proposed by Nagy et al.

(2015).

Ropke and Pisinger (2006b) proposed an adaptive large neighborhood search (ALNS) algorithm

for a class of VRPs with backhauls that was also applied to a small subset of VRPSPD instances but

could not compete with the state-of-the-art approaches specifically tailored to the VRPSPD. The con-

tribution of this paper is to propose a more effective ALNS heuristic combined with a path relinking

(PR) approach, called ALNS-PR, to address the VRPSPD and its variants. We introduce an inno-

1

vative ALNS operator that takes the load characteristics of VRPSPDs into account and significantly

accelerates the convergence rate of the search.

To evaluate the performance of our ALNS-PR algorithm, we perform extensive computational

studies and demonstrate the competitiveness of our approach on established benchmark instances

proposed in the literature. We improve numerous previous best-known solutions (BKS), especially on

VRPSPDTL, VRPSPDTW, and VRPDDP instances. In addition, we introduce a new VRPDDPTW

benchmark and report results on those instances.

The paper is structured as follows: Our ALNS-PR algorithm is explained in detail in Section 2.

We describe the numerical studies to evaluate the performance of the proposed approach in Section 3.

The paper is summarized and concluded in Section 4.

2 Adaptive large neighborhood search with path relinking

In this section, we describe our solution method that combines an ALNS algorithm with a PR approach.

A pseudocode overview of the ALNS-PR is given in Figure 1.

S Ð generateInitialSolutionpq
Initialize best solution S� Ð S
while number of iterations without improvement not reached do

if S already visited or set of elite solutions E not completely filled then
{Perform single ALNS iteration and local search on subset K of routes drawn from S}
S1 Ð performALNS (S,K)
S1 Ð performLocalSearchpS1,Kq

else
S1 Ð performPathRelinkingpS, Eq
S1 Ð performLocalSearchpS1q

end if
if accept(S1, S) then
S Ð S1

if S1 improves on S� then
S� Ð S1

end if
end if
updatePenaltyFactorspSq

end while

Figure 1: Pseudocode of the ALNS-PR algorithm

The initial solution S is generated by means of the savings algorithm introduced by Clarke and

Wright (1964) (Section 2.2) and improved by a local search procedure (Section 2.5).

The following main phase of our algorithm is then repeated until a maximum number of iterations

ω without improvement of the current best solution S� is reached. In each iteration, we decide whether

to apply the ALNS or the PR component to the current solution S. Our PR component relies on a

dynamic set E of elite solutions that are recombined with new solutions found during the search. If

the current solution S has already been visited before, or the elite set is not completely filled, i.e.,

|E | is smaller than the maximum size λ of the elite set, a single iteration of our ALNS component is

performed. We apply ALNS and the following local search step only to a subset K of routes drawn

from the current solution S that are closely located to each other (Section 2.3), resulting in solution

S1. We observed a beneficial impact on solution quality and run-time compared to the application of

both components to the entire solution.

2

Otherwise, if S represents a new solution and the elite set E is filled, PR is applied between S and

the solutions contained in E (Section 2.4). Subsequently, we perform local search on the best solution

S1 returned by the PR routine.

For the resulting solution S1, we evaluate if it should be included in the set of elite solutions E .

As long as E is not completely filled, any feasible solution is added. Otherwise, S1 is included and

replaces the worst solution contained in E if it is feasible, and

� improves on the best solution in E , or

� a SA-based comparison with the worst solution in E similar to the mechanism described in

Section 2.6 turns out in favor of the candidate solution S1, and the inclusion of S1 does not

decrease the average diversity among all elite solutions. We measure the diversity between

solutions in terms of the number of arcs exclusively contained in one of both solutions (see

Section 2.4).

This procedure aims at balancing quality and diversity of the elite solutions.

Next, the SA acceptance mechanism decides if S1 replaces S as the current solution for the sub-

sequent iteration (Section 2.6). After µ iterations without improvement, we reset S to S�. For the

purpose of diversification, we set the SA temperature back to its initial value and S to a solution

randomly chosen from the elite set after ε solution resets. The probability of an elite solution to be

selected is proportional to the diversity between this solution and S�.

Infeasible solutions, i.e., solutions not respecting all constraints are allowed and handled by means

of a dynamic penalty mechanism. More precisely, we transform constraint violations into penalty

costs by multiplying the respective value with a dedicated penalty factor for each constraint. The

penalty factors of solution S are dynamically updated during the search depending on the number of

consecutive ALNS-PR iterations during which the respective constraint has been satisfied or violated

(Section 2.1). Moreover, if the ALNS component has been applied in the current iteration, we up-

date the selection probabilities of its components according to the adaptive mechanism described in

Section 2.3.

Heuristic optimization for the classical VRPTW is usually conducted under the assumption of

a hierarchical objective function with the main goal of minimizing the number of employed vehicles

(Bräysy and Gendreau 2005). This is also true for the investigated problem variants VRPSPDTW

and VRPDDPTW. If customer time windows are present, we enable a vehicle minimization phase if

the current solution S is feasible, and the number of unsuccessful vehicle reduction attempts is smaller

than a nonnegative integer θ. Then, our ALNS tries to remove a route from the current solution, and

in our PR component, we ignore elite solutions that utilize a higher number of vehicles than S for

relinking. Otherwise, if S has been infeasible for ι iterations, we add an empty route to S. In the

following description of our solution method, we explicitly point out the modifications that become

necessary when time windows need to be taken into account.

Finally, to consider the possibility of satisfying a customer’s pickup and delivery requests via two

separate visits as in the VRPDDP(TW), we extend the previously described algorithm by an ad-

ditional phase. Any VRPDDP can be transformed into a VRP with mixed deliveries and pickups

(VRPMDP) with twice as many customers where each (partial) customer either requires pickup or

delivery service but not both. To this end, each customer of an original VRPDDP(TW) instance is

replaced by (i) a duplicate of that customer having a delivery demand equal to the delivery demand

of the original customer and a pickup demand equal to zero, and (ii) a duplicate having a delivery

demand equal to zero and a pickup demand equal to the pickup demand of the original customer.

3

Naturally, doubling the instance size significantly increases the computational effort required by any

solution method. Therefore, we refrain from duplicating each customer at the beginning of the search.

Instead, we first apply the main phase of our algorithm as previously described under the assump-

tion of indivisible customer demands. After ω iterations without improvement of the current best

VRPSPD(TW) solution S�, we duplicate each customer in S� and in each current elite solution. We

subsequently repeat the main phase of our algorithm using half of the initial value of ω as stopping

condition with the goal of obtaining an improved VRPDDP(TW) solution.

2.1 Solution evaluation and penalty mechanism

In order to increase the flexibility in exploring the solution space, our ALNS-PR temporarily tolerates

constraint violations by imposing dynamic penalty costs on infeasible solutions. The objective function

value of a solution S is then determined using a generalized cost function fgenpSq which includes penalty

costs for violating the capacity and time window constraints:

fgenpSq � fdistpSq � δCυCpSq � δTW υTW pSq.

Here, fdistpSq denotes the total traveled distance of solution S. The penalty factor for capacity (time

window) violation is denoted as δC (δTW), and the current capacity (time window) violation in solution

S is given by υCpSq (υTW pSq).

All penalty factors are initially set to δ0 and dynamically varied within the interval rδmin , δmax s.

After η� consecutive ALNS-PR iterations during which S has been infeasible with respect to a certain

constraint, the associated penalty factor is increased by factor δupdate . Analogously, after η� iterations

without violating a certain constraint, the respective penalty factor is divided by the factor δupdate .

In contrast to the classical CVRP, the vehicle load in the VRPSPD and its extensions does not

monotonically decrease or increase along a route but rather fluctuates. Therefore, for a solution to

the VRPSPD, feasibility with respect to the vehicle capacity is given if for each vertex i of each route,

the total demand picked up until vertex i plus the total demand still to be delivered at vertex i does

not exceed the vehicle capacity. Thus, even for intra-route moves, capacity evaluations cannot be

performed in constant time without introducing additional data structures. We efficiently evaluate

capacity violations by implementing similar data structures as described in Zachariadis et al. (2010),

which rely on storing forward and backward demand and load quantities for each vertex in a route.

Given a route r and let Vr denote the set of vertices visited by r, Q the vehicle capacity and li the

vehicle load at vertex i, we define the capacity violation of route r as the maximum violation of the

vehicle capacity encountered along all vertices of r:

υCprq � max
iPVr

pmaxpli �Q, 0qq.

Time window violations are calculated based on the principle of time travel as described in Nagata

et al. (2010) and Schneider et al. (2013). After considering a time window violation only once at

the vertex of occurrence, it is assumed that the vehicle is allowed to perform service at the latest

feasible moment, i.e., at the end of the time window of the regarded customer. This procedure ensures

that violations are not accumulated along actually feasible succeeding vertex sequences. Using this

approach, the computation of changes in time window violation for conventional inter-route moves

can be conducted in Op1q.

4

As stated in the previous section, in the case of VRPSPD variants with customer time windows,

we are faced with a hierarchical objective function with the main goal of minimizing the number of

employed vehicles. Then, fgen becomes the secondary objective function that needs to be evaluated if

two solutions utilize the same number of vehicles.

2.2 Initialization with savings algorithm

In order to quickly generate an initial solution, we implement an adaption of the savings algorithm

introduced by Clarke and Wright (1964) consisting of the following steps:

1. Generate back-and-forth tours for all customers.

2. Calculate the cost saving for each pair of customers resulting from merging the associated routes

as s � c0i � c0j � cij , where cij corresponds to the distance between two vertices i and j, and

sort the savings in decreasing order.

3. While there are positive cost savings, merge the associated routes if this does not result in

any constraint violation. Note that, if both routes either start or end with the customers

corresponding to the current saving value, we need to reverse the order of customer visits in

one route before the merging can be performed. However, this is usually undesirable in settings

where tight time windows need to be considered. In addition, due to the resulting shift of pickup

and delivery demands, a reversal of the route direction might render an initially feasible route

infeasible with respect to the capacity constraint. Thus, if the route reversal would lead to any

constraint violation, the merging is not performed.

After the merging procedure, the resulting number of routes may exceed the number of available

vehicles. In this case, we identify the route in which the maximum load encountered along all customer

visits is minimum. This route is then dissolved, and each customer inserted at the cheapest position

in the remaining routes. Capacity and time window violations are handled by imposing penalty costs

according to the generalized cost function (see Section 2.1). We repeat the process of dissolving routes

until the number of routes complies with the number of available vehicles.

The obtained solution is subsequently improved by a local search step (see Section 2.5).

2.3 The adaptive large neighborhood search component

The LNS paradigm, originally introduced by Shaw (1998), consists in iteratively destroying and subse-

quently repairing solutions by removing and reinserting relatively large numbers of customers. ALNS

extends this approach by deploying several competing removal and insertion operators which are cho-

sen at each iteration depending on their previous search performance. To this end, each operator is

assigned a selection probability which is dynamically updated during the search (Ropke and Pisinger

2006a). ALNS has been successively applied to several VRP variants (see, e.g., Ropke and Pisinger

2006a,b, Pisinger and Ropke 2007, Hemmelmayr et al. 2012).

In our solution approach, the ALNS component mainly serves the purpose of diversifying the

search. Figure 2 shows a single iteration of our ALNS implementation in pseudocode.

First, we determine the subset of routes K from which customers are removed and subsequently

reinserted. To this end, a seed route is randomly selected. The remaining routes to be contained

in K are identified by repeating the following procedure: For each route not yet in K, we calculate

the average distance of its customers to all customers already contained in K. If this value is smaller

than ςd max
i,jPV

pcijq, where ςd P p0, 1s is called distance threshold factor and max
i,jPV

pcijq corresponds to the

5

K Ð getNearestRoutes(S, πd)
if vehicle minimization enabled then
S1 Ð removeRoute(S, K)

else
n� Ð drawNumberOfCustomersToRemove(π||, K)
{Apply randomly selected removal operator based on probabilities π�}
S1 Ð removeCustomers(S, K, n�, π�)

end if
{Apply randomly selected insertion operator based on probabilities π�}
S1 Ð insertCustomers(S1, K, π�)

Figure 2: Pseudocode of our ALNS component

maximum distance between any two vertices in the problem instance, the respective route is added to

the subset. To increase the flexibility of the subset generation, at each ALNS iteration, ςd is randomly

selected from list Ψd � pςdmin , ς
d
min�0.05, ..., ςdmax�0.05, ςdmax q with the minimum and maximum values,

ςdmin and ςdmax , respectively, being multiples of 0.05. Each value in Ψd is assigned a probability from

vector πd which is dynamically updated during the search according to the mechanism described in

Section 2.3.3.

If the vehicle minimization phase is currently enabled, we use the route removal operator (Section

2.3.1) to remove a route contained in K from the current solution. Otherwise, we first select the number

of customers that are removed from K. In most LNS implementations, this is done by randomly

selecting the percentage of customers to remove from a relatively large interval Ψ|| � rς
||
min , ς

||
max s.

However, to account for the observation that ideal removal percentages are highly instance-dependent,

we split Ψ|| into five sub-intervals as done by Goeke and Schneider (2015). At each ALNS iteration, we

select a sub-interval based on dynamic probabilities π||. The number n� of customers to remove from

K is then randomly determined within the selected interval. The customer removal is subsequently

performed by means of a removal operator that is selected based on probabilities π�.

Finally, we select an insertion operator (Section 2.3.1) according to probabilities π� and succes-

sively reinsert the previously removed customers into the routes of K.

2.3.1 Removal and insertion operators

To remove customers from the previously determined subset of routes K, we use the following operators:

Random removal randomly removes customers from K until n� customers are removed.

Cluster removal was first introduced by Ropke and Pisinger (2006a) and aims at removing cus-

tomers that are located close to each other. First, we select a route and the first customer to

be removed from this route at random. Subsequently, the following steps are repeated until n�

customers are removed from the current solution: We randomly choose a customer among the

already removed customers and identify the route r which yields the smallest average distance of

its customers to the selected customer. Next, we apply Kruskal’s algorithm (Kruskal 1956) for

solving minimum-spanning-tree (MST) problems to the sub-graph composed of the customers of

route r. Let nr denote the number of customers served by route r. We abort the execution of the

MST algorithm as soon as the number of generated edges is equal to nr � 2, i.e., two sub-trees

remain from which one is randomly chosen for removal. If the size of the selected cluster exceeds

the number of remaining customers to be removed, we randomly remove customers from the

cluster until n� customers are removed.

6

Relatedness removal follows the idea of removing customers that are considered similar and thus

likely to be interchangeable (Shaw 1997). The relatedness of two customers i and j is measured

in terms of the distance cij between them, the difference in their delivery as well as pickup

demands |ddi � d
d
j | and |dpi � d

p
j |, respectively, and the difference between the earliest start times

of their time windows |ei � ej |. Each partial relatedness measure is weighted with a parameter

χ and normalized using the respective extreme values across the set of all customers C given by

the problem instance. The relatedness measure Ri ,j of two customers i and j is thus calculated

as follows:

Ri ,j � χc
cij

max
i,jPC

pcijq
�χd

|ddi � ddj |

max
iPC

pddi q � min
iPC

pddi q
�χp

|dpi � dpj |

max
iPC

pdpi q � min
iPC

pdpi q
�χe

|ei � ej |

max
iPC

peiq � min
iPC

peiq
.

Initially, we select a route and the first customer to be removed from this route at random. Then,

we first randomly select a customer from the already removed customers. Next, all remaining

customers in K are stored in a list of size L in ascending order of their relatedness value with

respect to the selected customer. From this list, we draw the customer at position tLζχ
rel

u, where

ζ is a random number P r0, 1q and χrel a parameter ¥ 1, which allows to balance the influence

of randomness and relatedness on the selection. We repeat this procedure until n� customers

are removed.

Worst removal as originally introduced by Ropke and Pisinger (2006a) aims at removing customers

which appear to be unfavorably positioned in the current solution with respect to the additional

routing cost caused by serving them. All customers contained in the current subset K are stored

in a list of size L and sorted in descending order of the cost reduction resulting when removing

them from the current solution. At each iteration, we choose the customer at position tLζχ
worst

u.

Again, ζ is a random number P r0, 1q, and χworst ¥ 1 allows to control the randomness of the

selection.

Neighbor graph removal, proposed in Ropke and Pisinger (2006b), is based on exploiting infor-

mation about promising orders of customer visits gathered in the course of the search. More

precisely, a complete directed and weighted auxiliary graph, called the neighbor graph, is intro-

duced, whose vertices correspond to the customers contained in the current subset of routes K.

Each arc pi, jq is weighted with the objective function value of the best solution found so far in

which customer j is visited directly after customer i. Initially, the weight of each arc is set to

positive infinity and dynamically updated during the search.

All customers in K are stored in a list of size L and sorted in descending order of a score which

is based on the current visiting orders in the routes of K. More precisely, the score for each

customer i is calculated by summing up the the weights of the arcs pi�, iq and pi, i�) in the

neighbor graph, where i� and i� correspond to the predecessor and successor of i, respectively.

At each iteration, the operator removes the customer at position tLζχ
nb

u with random number

ζ P r0, 1q and χnb ¥ 1. After the removal of customer i, the neighbor scores of customers i� and

i� are updated accordingly.

Route removal removes all customers from the route in K with the smallest maximum load encoun-

tered along all customers. As stated before, we exclusively apply this removal operator if the

vehicle minimization phase is currently enabled.

Load balance removal aims at specifically taking the load characteristics of the VRPSPD and its

extensions into account. Intuitively, customers with high pickup demands should be visited

7

late while customers with high delivery demands should be served early in a route. We try to

identify and rearrange customer visits which seem to be unfavorably positioned with respect to

the associated demand quantities and the capacity utilization in the corresponding route. To

this end, we first select a route r from K at random. Next, we calculate a position score øposi for

each customer i in r:

øposi � pi
dpi°
jPVr

dpj
� p|Vr| � 1 � piq

ddi°
jPVr

ddj
,

where pi corresponds to the current insertion position of customer i. All customers contained in

route r are stored in a list of size L in ascending order of their position score. We subsequently

draw the customer from position tLζχ
load

u. Analogous to the previous operators, ζ corresponds

to a random number P r0, 1q, and χload ¥ 1 controls the influence of the position score on the

customer selection.

To reinsert the previously removed customers into the routes of subset K, we use one of the

following insertion operators:

Greedy insertion is implemented in two variants:

1. At each iteration, the best insertion is determined for each of the remaining customers.

The customer associated with the overall best insertion is inserted accordingly.

2. The procedure is similar to the first variant except that we do not allow the reinsertion

of a customer into the route it had been removed from in the previous removal step. A

comparable approach called greedy insertion forbidden is used by Hemmelmayr et al. (2012).

GRASP insertion is inspired by the metaheuristic introduced in Feo and Resende (1989). The

best insertion is determined for each remaining customer and stored in a list of size L which is

sorted in ascending order of cost increase. At each iteration, the next customer to be inserted is

randomly selected among the best tχGRASPLu remaining insertions. Here, χGRASP corresponds

to a number P p0, 1q.

Regret insertion was also proposed by Ropke and Pisinger (2006a) and tries to overcome the myopic

behavior of greedy insertion by implementing a look-ahead strategy. More specifically, a regret-k

value is calculated for each customer as the difference between the cost increase resulting from

the cheapest insertion of this customer into the k-best route and its optimal insertion into the

best route from K. At each iteration, we perform the best insertion of the customer associated

with the largest regret value. We implement regret insertion for k � 2, 3, 4.

Random insertion aims at solution diversification by inserting each customer at a random position

of a randomly selected route from K.

2.3.2 Route selection and evaluation of removal and insertion

While some of the previously described removal operators rely on removing customers without consid-

ering the properties of the routes they belong to, we additionally use operators which aim at removing

customers from routes with certain characteristics. To this end, we use various route selection policies

which are combined with the corresponding removal operators (see Schneider et al. 2015, for a similar

approach).

Besides a purely random selection, we implement the following policies that determine routes

according to a roulette wheel selection mechanism based on specific criteria:

Cost selects a route with a probability proportional to the cost of the route including penalty costs.

8

Distance is based on the length of a route. The selection probability of a route increases with the

associated traveled distance.

Efficiency aims at identifying inefficient routes, i.e., routes that are characterized by large detours

to cover a relatively small quantity of customer demands. The probability of a route to be

selected is proportional to the ratio of the associated traveled distance and the average capacity

utilization in this route.

High average utilization selects a route with a probability proportional to the average capacity

utilization in the route.

Low average utilization determines a selection probability for each route that is inversely propor-

tional to the respective average capacity utilization.

High maximum load performs the route selection according to a probability that increases with

the maximum load encountered along all customers served in a route.

Low maximum load selects each route based on a probability inversely proportional to the maxi-

mum load encountered along all customers of the route.

The last four selection policies focus on the utilization of the vehicle capacity or the fluctuating

nature of the vehicle load along routes arising in the investigated problem variants. Obviously, both

variants of the average utilization and maximum load policies pursue opposing strategies. However, the

adaptive mechanism of our ALNS component is able to successfully identify the appropriate strategies

for the problem instance at hand, see Section 3.3.

With respect to compatibility, random removal, cluster removal, and relatedness removal are able

to make use of each selection policy. The load balance removal operator exclusively employs the high

average utilization policy. Once a compatible removal operator has been selected, we subsequently

select a policy based on probabilities πr . The selected route selection policy is used by the current

removal operator for the entire iteration.

Moreover, to guide the search towards yet unexplored areas, we implement two additional variants

of worst removal, greedy insertion, GRASP insertion, and regret insertion that differ in how the

corresponding operation is evaluated. Besides the basic operator variants that evaluate the associated

operation based on the change in routing cost according to the generalized cost function (∆fgen), we

implement variants that employ the evaluation measures:

1. diversification ∆fdiv , which additionally considers a diversification penalty based on historic arc

occurrence frequencies:

∆fdiv po, Sq � ∆fgenpo, Sq � κ
fgenpSq

n

d ¸
pi ,j qPA�

o

hpi, jq,

where ∆fgenpo, Sq corresponds to the change of the objective function value of solution S caused

by removal or insertion operation o, κ to a real-valued parameter to control the amount of

diversification, fgenpSq to the current objective function value of solution S, n to the number of

customers given by the problem instance, hpi, jq represents the occurrence frequency of arc pi, jq

in previously generated solutions, and A�
o the set of arcs generated by operation o, and

2. noise ∆fnoise , which multiplies the change in routing cost caused by operation o by a random

number ζ drawn from the interval rζmin , ζmax s (see Ropke and Pisinger 2006a, Hemmelmayr

et al. 2012, for a similar approach):

∆fnoisepo, Sq � ∆fgenpo, Sqζ.

9

2.3.3 Adaptive mechanism

At each ALNS iteration, the choice of distance threshold factor, removal interval, removal operator,

route selection policy (if applicable), and insertion operator is performed according to a roulette wheel

selection procedure as proposed in Ropke and Pisinger (2006a) based on the probability vectors πd ,

π||, π�, πr and π�, respectively. More precisely, given a set of adaptive components denoted as

X P td, ||,�, r,�u, the selection probability of component i P X is calculated as πi � wi{
°
jPX wj ,

where wi corresponds to the weight of component i. All components of a set X are initially assigned

the same weight and dynamically updated during the search depending on their performance. The

performance of an adaptive component is measured in terms of a scoring system. A score of σbest is

added to the current score of a component whenever a new overall best solution is found, a score of

σimp if the new solution S1 improves on the current one S and has never been encountered before, and

a score of σacc if S1 is worse than S but accepted according to the SA acceptance mechanism and has

never been encountered before in the search.

We maintain a solution memory to keep track of already obtained solutions and allow our ALNS-

PR to fill this memory for ν iterations before any weight update takes place. The weight of each

component is then updated every γ ALNS iterations based on its performance during this period. If

øi denotes the current score of component i and βi the number of applications of the component since

the last weight update, then the new weight is determined as wi � wip1 � αq � αøi{βi. The factor

α P r0, 1s allows to control the reaction speed of the weight adjustment to the performance of the

component. The values of øi and βi are reset to zero after each update.

2.4 The path relinking component

PR represents an intensification strategy which was originally proposed by Glover (1997) and aims

at discovering promising solutions on the trajectories between elite solutions obtained during the

search. Based on the assumption that good solutions are likely to share common characteristics,

PR consists in creating a path of solutions between an initial and a guiding solution in the hope of

obtaining improving solutions in the process. The initial solution is thereby transformed into the

guiding solution by successively incorporating characteristics of the guiding solution, thus stepwise

decreasing the diversity between them.

The PR component complements our ALNS, which primarily focuses on diversifying the search.

By connecting promising solutions located in distant regions of the search space, we aim at discov-

ering improving solutions that are not reachable via local search. Ho and Gendreau (2006), Fallahi

et al. (2008), and Nguyen et al. (2012), for instance, show how to successfully hybridize well-known

metaheuristics for routing problems with PR approaches. Figure 3 shows our PR implementation in

pseudocode.

Whenever a solution S has been encountered for the first time in the search, it is passed to the PR

algorithm by the main ALNS-PR routine. For each solution Se contained in the elite set E , we set the

current solution on the solution path Sc to the initial solution S and the guiding solution Sg to Se. In

general, we perform PR between S and all elite solutions in E . However, if we are currently trying to

reduce the number of vehicles, only solutions in the elite set with a number of routes less than or equal

to the number of routes in S are considered for relinking. Otherwise, if Sg utilizes a higher number of

vehicles, we need to equalize both vehicle numbers by adding empty routes to S accordingly.

10

S1 ÐH
for each solution Se P E do

{Initialize current and guiding solution}
Sc Ð S
Sg Ð Se

{Determine arcs exclusively contained in guiding solution and initialize path length}
A� Ð getDifferingArcs(S, Sg)
pÐ |A�|
while |A�| ¥ tp1� ρq � pu do
mbest ÐH
for each arc pi, jq P A� do

{Determine move which creates arc yielding the least cost change}
mÐ getBestMoveToCreateArc(i, j)
if mbest � H_m improves on mbest then
mbest Ð m

end if
end for
Sc Ð performMove(Sc, mbest)
if Sc � S ^ Sc � Sg ^ pS1 � H_ Sc improves on S1) then
S1 Ð Sc

end if
{Remove arcs created by previously performed move from set of differing arcs}
A� Ð A�zA�

mbest

end while
end for

Figure 3: Pseudocode of our PR component

We explain the following steps of our PR implementation using Figure 4, which illustrates the

transformation of an initial solution into a guiding solution for an example instance composed of

eleven customers. Both solutions consist of five routes each starting and ending with the depot vertex

0. Initially, we determine those arcs that are contained in Sg but not in the initial solution S and store

them in set A�. The goal of our PR procedure is now to iteratively incorporate the arcs in A� into

the current solution. In our example, there are ten such differing arcs which are exclusively contained

in Sg (marked as 7).

During the execution of PR, we avoid destroying matching arcs, i.e., arcs contained in both solu-

tions. To this end, we connect the vertices incident to matching arcs to fixed vertex sequences that

are treated as atomic units and not allowed to be split. Initially, there are two fixed sequences for

each customer i, Γ�
i � py, ..., iq and Γ�

i � pi, ..., zq, corresponding to the fixed vertex sequence ending

with customer i and the fixed vertex sequence starting with customer i, respectively. Both sequences

associated with a customer only contain this customer at the beginning. Consequently, for customer

3 that is served by route A in Figure 4, Γ�
3 � Γ�

3 � p3q initially holds.

Before applying the main phase of our PR approach, we fix all arcs that are already contained

in both solutions. An arc pi, jq, where i and j correspond to customers, is fixed by merging the

vertex sequences Γ�
i � py, ..., iq and Γ�

j � pj, ..., zq. The result of the merging is stored in Γ�
y and

Γ�
z , i.e., Γ�

y � Γ�
z � py, ..., i, j, ..., zq. We then remove Γ�

i and Γ�
j from the set of fixed vertex

sequences. Consider arc p3, 11q, that is contained in both example solutions to be fixed first. This

requires merging of Γ�
3 and Γ�

11, leading to Γ�
3 � Γ�

11 � p3, 11q. From now on, arc p3, 11q is not

allowed to be removed from Sc anymore. In other words, Γ�
3 and Γ�

11 may not be removed from the

fixed sequence they are now part of and are therefore removed from the sequence set. In case the

regarded arc starts (ends) with the depot vertex 0, the corresponding depot visit is inserted at the

beginning (end) of Γ�
j � pj, ..., zq (Γ�

i � py, ..., iq), leading to the modified sequence Γ�
z � p0, j, ..., zq

11

(Γ�
y � py, ..., i, 0q) and discarding Γ�

j (Γ�
i). For example, fixing arc p0, 3q in Figure 4 after arc p3, 11q

results in Γ�
11 � p0, 3, 11q and the removal of Γ�

3 .

Next, we successively incorporate the arcs from A� into the current solution, thereby advancing

on the solution path between S and Sg. Because the guiding solution is close to a local optimum,

it is unlikely to discover improving solutions in its immediate proximity. Therefore, we refrain from

exploring the entire path between both solutions and restrict the search to a fraction of ρ of the

solution path. More precisely, we repeat the following steps until the number of remaining differing

arcs is smaller than a fraction of p1 � ρq of the initial cardinality of A�:

For each arc in A�, we determine the best move that inserts this arc into the current solution.

Consider arc pi, jq to be created in Sc. We distinguish five cases with respect to the creation of pi, jq:

1. If Γ�
i and Γ�

j do not contain the depot, two moves are possible: (i) Sequence Γ�
i may be moved

before Γ�
j , or (ii) sequence Γ�

j can be relocated after sequence Γ�
i . Assume arc p7, 10q to be

created in Sc in the first iteration of our example application. Then, we may relocate customer

7 from route E to route C, i.e., Γ�
7 before Γ�

10. Alternatively, it is allowed to move customer 10

from route C to route E, i.e., Γ�
10 after Γ�

7 .

2. If one of both sequences starts or ends with the depot, we only allow the relocation of the vertex

sequence that is not connected to the depot. Sequence Γ�
1 � p0, 1q in Figure 4, for instance, may

not be relocated to create arc p1, 8q.

3. If Γ�
i starts and Γ�

j ends with the depot and both sequences are part of the same route, arc

pi, jq can only be implicitly created by relocating all vertices lying between i and j.

4. If Γ�
i starts and Γ�

j ends with the depot and both sequences are served in different routes, the

2-opt� operator which is described in Section 2.5 is applied to merge the two route segments.

5. Finally, if the arc to be created starts (ends) with the depot, we determine the best relocation

for Γ�
j (Γ�

i) among the routes where the start (end) depot visit is not part of a fixed vertex

sequence.

The overall best move out of the set of best moves per arc is subsequently applied to the current

solution Sc. We set the best solution S1 to Sc if (i) Sc does not correspond to the initial solution S or

the guiding solution Sg, and (ii) S1 has not been initialized yet, or Sc improves on S1.

Moreover, we remove the matching arcs created by the previously performed move from A� and

update the set of fixed vertex sequences accordingly. Note that each move might introduce more

differing arcs than the currently considered arc into Sc. Take for example iteration 2 in Figure 4.

Here, we identify the relocation of sequence Γ�
9 � p9q from its former position in route D to the last

position in route E as the best move to introduce arc p9, 0q into Sc. In doing so, three differing arcs,

namely p1, 8q, p6, 9q, and the regarded arc p9, 0q are created at once and subsequently removed from

A�. Next, the associated fixed vertex sequences need to be updated. Assume this is done according to

the previously mentioned order of arcs. Then, we merge Γ�
1 � p0, 1q and Γ�

8 � p8q into Γ�
8 � p0, 1, 8q,

Γ�
6 � p6q and Γ�

9 � p9q into Γ�
9 � Γ�

6 � p6, 9q, and attach the depot to Γ�
9 � p6, 9q, leading to

Γ�
6 � p6, 9, 0q. Finally, Γ�

1 , Γ�
8 , Γ�

6 , Γ�
9 , and Γ�

9 are removed from the sequence set.

For the purpose of illustration, Figure 4 shows the creation of the entire solution path, leading to

the equalization of both solutions in iteration 4.

2.5 Local search

In the initialization phase and after each application of our ALNS and PR components, a local search

procedure is applied.

12

Iteration Route Sc Sg Arcs created in Sc

0 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0

B 0 - 5 - 0 0 - 5 - 0

C 0 - 2 - 10 - 0 0 7 7 7 10 7 4 7 0

D 0 - 1 - 9 - 8 - 0 0 - 1 7 8 7 2 7 0

E 0 - 4 - 7 - 6 - 0 0 7 6 7 9 7 0

1 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0

B 0 - 5 - 0 0 - 5 - 0

C 0 - 2 - 7 - 10 - 0 0 7 7 - 10 7 4 7 0 p7, 10q

D 0 - 1 - 9 - 8 - 0 0 - 1 7 8 7 2 7 0

E 0 - 4 - 6 - 0 0 7 6 7 9 7 0

2 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0

B 0 - 5 - 0 0 - 5 - 0

C 0 - 2 - 7 - 10 - 0 0 7 7 - 10 7 4 7 0

D 0 - 1 - 8 - 0 0 - 1 - 8 7 2 7 0 p1, 8q

E 0 - 4 - 6 - 9 - 0 0 7 6 - 9 - 0 p6, 9q, p9, 0q

3 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0

B 0 - 5 - 0 0 - 5 - 0

C 0 - 7 - 10 - 0 0 - 7 - 10 7 4 7 0 p0, 7q

D 0 - 1 - 8 - 2 - 0 0 - 1 - 8 - 2 - 0 p8, 2q, p2, 0q

E 0 - 4 - 6 - 9 - 0 0 7 6 - 9 - 0

4 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0

B 0 - 5 - 0 0 - 5 - 0

C 0 - 7 - 10 - 4 - 0 0 - 7 - 10 - 4 - 0 p10, 4q, p4, 0q

D 0 - 1 - 8 - 2 - 0 0 - 1 - 8 - 2 - 0

E 0 - 6 - 9 - 0 0 - 6 - 9 - 0 p0, 6q

Figure 4: Example application of our PR procedure

We aim at improving routes by means of the following operators: A relocate operator, originally

introduced in Savelsbergh (1992) is implemented which moves a customer from its position to a

different position in the same or a different route. Moreover, we use an exchange operator (Savelsbergh

1992) which is able to swap customers between and within routes. The 2-opt operator replaces two

arcs of a single route by two new ones reversing the order of customers between the vertices incident to

the removed arcs (Lin 1965). Finally, we implement a 2-opt* operator as an inter-route modification

of the 2-opt operator which removes one arc from each route and reconnects the first part of the

first route with the second part of the second route and vice versa (Potvin and Rousseau 1995). A

reversal of the route orientation, which is usually undesirable in problems with time windows, is hereby

avoided.

Our local search implements a best improvement strategy. The search is stopped when no further

improving move can be identified. In order to speed up the search, we maintain a set of changed routes

which is initially filled with the routes that have been altered by the preceding algorithmic component.

We restrict the evaluation and thus application of moves to those involving at least one route from

this set. The set of changed routes is dynamically updated during the execution of the local search,

i.e., a previously unchanged route is added to the set after being modified by a local search move.

2.6 Acceptance decision

To decide if the solution S1 returned by the local search should replace S, we use an acceptance

mechanism based on SA.

13

While solutions that improve S are always accepted, we accept worse solutions with probability

e�pfgen pS1q�fgen pSqq{T . The temperature parameter T is initially set to a value such that a deterioration

of the current solution S by δ is accepted with a probability of 50%. The temperature is decreased

after every ALNS-PR iteration such that the acceptance probability of a relative deterioration of δ is

equal to 1% after a cooling period of τ iterations.

3 Computational studies

In this section, we present the computational studies conducted to evaluate the performance of our

ALNS-PR. The benchmark instances used for testing our algorithm are presented in Section 3.1.

Section 3.2 describes the experimental environment and the setting of the algorithmic parameters.

In Section 3.3, we analyze the influence of specific components of our algorithm on solution quality

and computation time. Finally, in Section 3.4, we discuss the competitiveness of our approach on

VRPSPD, VRPSPDTL, VRPSPDTW, and VRPDDP benchmark instances from the literature, and

present results for the newly introduced set of VRPDDPTW instances.

3.1 Benchmark instances

In the following, we describe the benchmark instances that we use in our computational studies

structured according to problem type.

3.1.1 VRPSPD instances

To assess the performance of ALNS-PR for the VRPSPD, we use the instances proposed by Salhi and

Nagy (1999), from now on referred to as set Salhi-VRPSPD, Dethloff (2001), denoted as set Dethloff,

and Montané and Galvão (2006), for which the subset of instances with up to 200 customers is called

Montané-Medium and the whole set Montané-All.

The set Salhi-VRPSPD is based on a CVRP benchmark introduced in Christofides et al. (1979)

that contains 14 instances with 50 to 199 customers which are randomly distributed in ten instances

and clustered in the remaining ones. Salhi and Nagy (1999) use seven of the CVRP istances that

do not contain a maximum route duration and customer service times to generate seven VRPSPD

instances by splitting the original customer demands into delivery and pickup demands based on a

ratio of the customer coordinates. This subset of instances is referred to as X set. Another subset of

seven instances (Y set) is generated from the X-series of instances by swapping the delivery and pickup

demands of every other customer. Unfortunately, these instances are not consistently treated in the

literature. Some authors swap the delivery and pickup demands of every customer instead of every

other customer or round the distances and demand quantities. To be able to compare our algorithm

to the state-of-the-art approaches for the VRPSPD, we do not round, but we exchange the demands

of every customer in set X.

Set Dethloff contains 40 VRPSPD instances with 50 customers and three or eight vehicles. Half of

the instances, denoted as SCA, are characterized by a uniform distribution of the customer coordinates.

In the other 20 instances, denoted as CON, half of the customers are uniformly distributed and the

remaining customers located in clusters.

The benchmark Montané-All contains 18 instances with 100, 200, and 400 customers that are

derived from a respective subset of the VRPTW instances proposed in Solomon (1987) and Gehring

and Homberger (1999). The customers are clustered (prefix C), randomly distributed (prefix R), or

14

a mixture of both (prefix RC). The authors create VRPSPD instances by omitting the time window

constraints and assigning a discrete pickup demand to each customer that is randomly drawn from

the interval used to generate the delivery demands in the original instances.

3.1.2 VRPSPDTL instances

VRPSPDTL instances are proposed by Salhi and Nagy (1999), called Salhi-VRPSPDTL, and Polat

et al. (2015), which we from now on refer to as Polat-VRPSPDTL.

Set Salhi-VRPSPDTL is composed of 14 instances which are generated according to the same

procedure as described in Section 3.1.1 to generate VRPSPD instances using the remaining seven

CVRP instances of Christofides et al. (1979) which contain a maximum route duration and customer

service times.

The Polat-VRPSPDTL instances are created by first converting the CVRP instances of Christofides

and Eilon (1969) to VRPSPD instances according to the approach described in Nagy et al. (2015) and

then adding time limits. The instances do not contain customer service times.

3.1.3 VRPSPDTW instances

Two sets of VRPSPDTW instances are provided by Wang and Chen (2012), which we denote as

Wang-Medium, and Wang et al. (2015), from now on referred to as Wang-Large.

The instances of set Wang-Medium are created by adding pickup demands to the 56 VRPTW

instances with 100 customers proposed by Solomon (1987). In addition to the customer distribution

described in Section 3.1.1, each instance is either characterized by narrow time windows and small

vehicle capacities (prefix C1/R1/RC1) or large time windows and large vehicle capacities (prefix

C2/R2/RC2).

Wang-Large contains 30 large-scale instances with 200, 400, 600, 800, and 1000 customers which

are derived from a subset of the VRPTW instances introduced in Gehring and Homberger (1999) by

adding pickup demands.

3.1.4 VRPDDP instances

For the VRPDDP, we use three instance sets of Nagy et al. (2015), which we label as Nagy1, Nagy2,

and Nagy3 and two sets of instances proposed by Polat (2017), which we denote as Polat-VRPDDP1

and Polat-VRPDDP2. All VRPDDP instances are based on VRPSPD and VRPSPDTL instances and

solved under the assumption of divisible customer demands.

The sets Nagy1, Nagy2, and Nagy3 are based on the 28 instances of Salhi-VRPSPD and Salhi-

VRPSPDTL with distances and demands rounded to the nearest integer. The set Nagy1 corresponds

to the unchanged original instances. Taking the original set as a basis, the delivery and pickup

demands of each customer are increased by multiplying each value by four and adding ten percent

of the vehicle capacity in order to obtain instance set Nagy2. The instances for benchmark Nagy3

are created by adding 75% of the vehicle capacity to the delivery demand and 20% of the vehicle

capacity to the pickup demand of every odd customer and adding 20% of the vehicle capacity to the

delivery demand and 75% of the vehicle capacity to the pickup demand of every even customer. Again,

the resulting demand values are rounded to the nearest integer. Moreover, for the instances with a

maximum duration imposed on the vehicle routes, we assume that the service time associated with a

15

customer is incurred twice if it is served via two separate visits. Polat (2017) interprets these instances

differently and considers only half of the original service time for each visit of a divided customer.

The instances of set Polat-VRPDDP1 are based on the VRPSPD benchmark Dethloff. Polat-

VRPDDP2 corresponds to the instances of Montané-Medium.

3.1.5 VRPDDPTW instances

Finally, we generate a new set of VRPDDPTW instances, denoted as HS, by modifying the VRP-

SPDTW instances contained in Wang-Medium similar to the approach described in Section 3.1.4.

More precisely, we add 20% of the vehicle capacity to the delivery demand and 5% of the vehicle

capacity to the pickup demand of every odd customer and 5% of the vehicle capacity to the delivery

demand and 20% of the vehicle capacity to the pickup demand of every even customer. Note that we

do not round and that the resulting demand quantities are limited to the vehicle capacity. Again, the

whole service time is incurred for each partial visit of a divided customer.

3.2 Computational environment and parameter setting

Our ALNS-PR is implemented as single-thread code in Java. All tests were performed on a Windows

10 Professional desktop computer with an Intel Core i5-6600 processor running at 3.30 GHz and 16

GB RAM. In all experiments, we performed ten runs on each instance.

To determine the parameter setting of our algorithm, the procedure proposed in Ropke and Pisinger

(2006a) is adopted. Starting from a reasonably well-performing parameter setting found during the

development of our method, we successively refine the setting of each parameter. To this end, we

evaluate three values for each parameter. The best value is kept as the final setting for the respective

parameter, and we subsequently proceed with tuning the next parameter.

The resulting parameter setting is shown in Table 1. With respect to the main ALNS-PR routine,

we report the maximum number of iterations without improvement (ω), the number of non-improving

iterations after which the current solution is reset to the current best (µ), the maximum number of

unsuccessful vehicle reduction attempts (θ), the number of iterations during which the feasibility of

the current solution could not be restored and whereupon an empty route is added (ι), and the number

of iterations after which the weight update of the adaptive components is enabled (ν). To achieve

a competitive solution quality and computation times on the different sets of benchmark instances,

we set ω � 4000 for all VRPSPD benchmarks and the sets Salhi-VRPSPDTL, Polat-VRPDDP1, and

Polat-VRPDDP2. For the remaining benchmarks, we set ω � 500.

For our ALNS component, we provide the boundaries of the removal interval (Ψ||) and the distance

threshold interval (Ψd), the scores to evaluate the performance of the adaptive components (σbest ,

σimp , and σacc), the factor which controls how fast the adaptive weight adjustment reacts to the

performance of the adaptive components (α), the number of iterations after which the weights of

the adaptive components are updated (γ), the parameters to control the degree of randomness in

specific removal operators (χload , χnb , χworst , and χrel), the weights used to calculate the relatedness

measure between two customers (χc, χd, χp, and χe), the percentage of best insertions considered

by the GRASP insertion operator (χGRASP), the factor κ to control the amount of diversification in

operation evaluation measure ∆fdiv , and the interval from which a random number is drawn in the

context of evaluation measure ∆fnoise (rζmin , ζmax s).

Regarding the PR component, λ denotes the size of the elite set, and ρ corresponds to the per-

centage of the solution path which we investigate in each PR execution.

16

We further report the initial (δ0), minimum (δmin), and maximum (δmax) penalty factors, the

penalty update factor (δupdate), and the numbers of ALNS-PR iterations after which the penalty

factors are increased (η�) as well as decreased (η�).

Finally, the SA-inspired acceptance mechanism is characterized by a relative solution deterioration

δ used to determine the initial and minimal temperature, the cooling period (τ), and the number of

solution resets after which the temperature is reset to its initial value and the current solution is set

to a solution randomly drawn from the elite set (ε).

ALNS-PR ALNS PR Penalties SA

ω 4000{500 Ψ|| r0.01, 0.25s λ 10 δ0 10 δ 0.01

µ 500 Ψd p0.2, ..., 0.5q ρ 0.7 δmin 0.1 τ 100

θ 200 σbest , σimp , σacc 6, 9, 3 δmax 10 000 ε 3

ι 100 α 0.2 δupdate 1.1

ν 100 γ 20 η� 2

χload 5 η� 2

χnb 5

χworst 4

χrel 5

χc, χd, χp, χe 2, 1, 1, 1

χGRASP 0.3

κ 0.7

rζmin , ζmax s r0.9, 1.1s

Table 1: Final parameter setting of our ALNS-PR.

3.3 Influence of algorithmic components

In this section, we analyze the effect of specific components of our ALNS-PR algorithm on solution

quality and computation time. For this purpose, we use ten instances randomly drawn from the

instance sets Salhi-VRPSPD and Salhi-VRPSPDTL.

We investigate the contribution of

1. specific ALNS components, namely the decomposition of the original problem into subsets of

closely located routes, the route selection policies, the evaluation measures ∆fdiv and ∆fnoise ,

the newly introduced load balance removal operator, and the random insertion operator, and

2. our PR implementation.

To this end, we consecutively disable each component while keeping the remaining components

enabled. The corresponding results are compared to those obtained by our full ALNS-PR algorithm.

More precisely, in Table 2, we contrast the average percentage gaps of the best solutions found to the

BKS from the literature (Avg. ∆b) of each algorithmic configuration. Furthermore, ∆t denotes the

percentage deviation of the average of the average run-times per instance of each configuration to the

respective value of our full ALNS-PR (shown in bold).

For each reduced algorithmic configuration, we observe a decrease in solution quality compared to

our complete approach with a maximum deviation of the best solution quality of 0.09%. Moreover,

the large majority of variants also shows a significant increase in computation time if the respective

component is omitted. This indicates that the associated components accelerate the convergence rate

of the search by helping to discover promising solutions early.

If the current solution is not decomposed in the ALNS step, we observe a run-time increase of

roughly 30%. Moreover, omitting the introduced route selection policies slows down computation by

roughly 15%, on average. A negligible speed-up with a decrease in solution quality can be obtained

17

Components

Decomposition 3 7 X X X X X X X X X X X X

Route selection

Cost 3 X 7 X X X X X X X X X X X

Distance 3 X X 7 X X X X X X X X X X

Efficiency 3 X X X 7 X X X X X X X X X

High avg. util. 3 X X X X 7 X X X X X X X X

Low avg. util. 3 X X X X X 7 X X X X X X X

High max. load 3 X X X X X X 7 X X X X X X

Low max. load 3 X X X X X X X 7 X X X X X

Evaluation

∆fnoise 3 X X X X X X X X 7 X X X X

∆fdiv 3 X X X X X X X X X 7 X X X

ALNS Operators

Load balance removal 3 X X X X X X X X X X 7 X X

Random insertion 3 X X X X X X X X X X X 7 X

Path relinking 3 X X X X X X X X X X X X 7

Avg. ∆b(%) 0.01 0.03 0.05 0.05 0.10 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.03 0.04

∆t (%) 30.09 16.58 21.04 11.28 -0.32 25.85 13.18 15.60 36.75 -2.26 32.47 7.74 110.46

Table 2: Comparison of the performance of different algorithmic configurations.

when the high average utilization selection policy is not employed. Deactivating evaluation measure

∆fnoise in the ALNS step seems to impede the search in finding good solutions early and thus to

decelerate its convergence rate by over 36%. On the other hand, the omission of ∆fdiv results in a slight

speed-up of roughly 2%. However, we prefer the increased solution quality by utilizing this component

over the small decrease in computation time that can be observed if it is omitted. Furthermore, the

newly introduced load balance removal operator seems to properly capture the characteristics of the

VRPSPD. By deactivating the new operator, the resulting algorithmic configuration additionally takes

roughly a third of the time spent by our full ALNS-PR algorithm. In addition, the results hint at an

appropriate diversification behavior of the random insertion operator. Besides the increase in solution

quality, its utilization results in a noticeable acceleration of the search.

Finally, the hybridization of our ALNS with the described PR implementation yields the most

significant increase in convergence speed. Using only our ALNS algorithm more than doubles the

computation time required compared to the proposed hybrid approach.

3.4 Computational results on benchmark instances

This section presents the results obtained by our ALNS-PR algorithm on the benchmark instances from

the literature for the VRPSPD, the VRPSPDTL (Section 3.4.1), the VRPSPDTW (Section 3.4.2),

and the VRPDDP (Section 3.4.3) and on the newly proposed VRPDDPTW instances (Section 3.4.4).

With respect to the benchmarks from the literature, we present aggregate views on the performance

of all relevant heuristics. The corresponding detailed results can be found in Appendix A.

3.4.1 Results on VRPSPD and VRPSPDTL instances

In Table 3, we present the summarized results of all relevant heuristics on the VRPSPD (Salhi-

VRPSPD, Dethloff, Montané-Medium, and Montané-All) and VRPSPDTL (Salhi-VRPSPDTL and

Polat-VRPSPDTL) benchmark instances. The upper part of the table shows the state-of-the-art

heuristics that have been applied to the VRPSPD but not the VRPSPDTL; the lower part of the table

18

contains the most successful approaches that provide solutions for both problem types, including our

ALNS-PR, which is the only method applied to each set of instances.

For each benchmark, we report the average percentage gap of the best solution quality based on

several runs to the BKS (Avg. ∆b) for each method that has been tested on the benchmark. The

average percentage gap of the average solution quality to the BKS (Avg. ∆a) is provided for those

instance sets for which this measure is available from the large majority of comparison algorithms.

Moreover, we translate the run-times of all methods into a common time measure that takes into

account the processors used. To this end, we relate the Passmark scores (see www.passmark.com)

of the processors used in the computational studies of the papers to the score of our i5-6600. Each

Passmark score is referring to the performance of a single core of the respective processor. In case of

parallel solution approaches, we multiply the translated run-times by the number of utilized threads as

reported in the corresponding paper. In addition, the run-times are multiplied by the number of runs

performed by the respective algorithm. The resulting times in seconds are given as tc . We are aware

that, due to the use of different operating systems and programming languages, an exact run-time

comparison is never possible. However, this procedure is the closest we can get to a fair comparison.

In the following, we list the algorithms that are compared in Table 3 and explain how to interpret

the corresponding results and run-times:

� For ZTK (Zachariadis, Tarantilis, and Kiranoudis 2010) the number of runs performed to obtain

the best solution reported is unknown and the run-time is based on the time elapsed when the

best solution was found.

� The results of SDBOF (Subramanian, Drummond, Bentes, Ochi, and Farias 2010) are based

on 50 runs performed by 256 parallel threads and the average time per run.

� For GKA (Goksal, Karaoglan, and Altiparmak 2013), VCGP (Vidal, Crainic, Gendreau, and

Prins 2014), and SUO (Subramanian, Uchoa, and Ochi 2013), the table provides results based

on ten runs and the average time per run.

� P (Polat 2017) uses six parallel threads for which the number of runs performed is unknown.

The run-time is based on the average time required to obtain the best solution reported.

� For PKKG (Polat, Kalayci, Kulak, and Günther 2015), the results are based on ten runs and

the time of the best run for benchmarks Salhi-VRPSPD and Salhi-VRPSPDTL, and on the

average time per run for benchmark Polat-VRPSPDTL.

� The results reported for ALNS-PR are based on ten runs and the average time per run.

Our ALNS-PR belongs to the best-performing approaches showing an average gap of the best

solutions to the BKS of 0.00% on the sets Salhi-VRPSPD, Dethloff, and Salhi-VRPSPDTL, and

competitive run-times with regard to the most successful heuristics that allow a fair comparison.

On set Montané-All, SUO is the only approach able to obtain the BKS for each instance while also

spending by far the most computation time. The slightly worse solution quality achieved by ALNS-

PR is accompanied by a run-time advantage of roughly 56% compared to SUO. The best trade-off

between solution quality and run-time on these instances can be achieved by VCGP. On set Polat-

VRPSPDTL, we improve three out of seven previous BKS (see Table A.5 in Appendix A) and note an

average improvement of �0.15% while spending only a fraction of the run-time required by PKKG.

19

Z
T

K
S

D
B

O
F

G
K

A
V

C
G

P
P

B
e
n
c
h
m

a
r
k

A
v
g
.

∆
b
(%

)
tc

(s
)

A
v
g
.

∆
b
(%

)
A

v
g
.

∆
a
(%

)
tc

(s
)

A
v
g
.

∆
b
(%

)
tc

(s
)

A
v
g
.

∆
b
(%

)
A

v
g
.

∆
a
(%

)
tc

(s
)

A
v
g
.

∆
b
(%

)
tc

(s
)

S
a
lh

i-
V

R
P

S
P

D
0
.1

1
5
.1

3
�

?
0
.0

0
-

1
3
4

6
5
6

0
.1

0
1
2
9
4
.8

7
0
.0

0
-

5
1
8
.6

0
-

-

D
et

h
lo

ff
0
.0

0
0
.9

1
�

?
0
.0

0
-

1
8

0
4
8

0
.0

0
1
9
.6

0
-

-
-

0
.0

0
1
8
.9

0
�

?

M
o
n
ta

n
é-

M
ed

iu
m

0
.1

5
7
.4

8
�

?
0
.0

2
0
.1

0
2
3
2

0
6
4

-
-

0
.0

3
0
.1

0
8
2
7
.3

0
0
.0

4
8
1
1
.0

2
�

?

M
o
n
ta

n
é-

A
ll

0
.4

7
2
6
.7

9
�

?
0
.1

7
0
.3

0
1

1
5
6

3
5
2

-
-

0
.0

7
0
.2

0
2
2
2
6
.9

0
-

-

S
U

O
P

K
K

G
A
L
N
S
-P

R

B
e
n
c
h
m

a
r
k

A
v
g
.

∆
b
(%

)
A

v
g
.

∆
a
(%

)
tc

(s
)

A
v
g
.

∆
b
(%

)
A

v
g
.

∆
a
(%

)
tc

(s
)

A
v
g
.

∆
b
(%

)
A

v
g
.

∆
a
(%

)
tc

(s
)

S
a
lh

i-
V

R
P

S
P

D
0
.2

1
-

1
7
1
0
.4

0
0
.0

2
-

3
3
7
.5

0
0
.0

0
-

1
3
0
8
.5

0

D
et

h
lo

ff
-

-
-

-
-

-
0
.0

0
-

1
0
5
.6

0

M
o
n
ta

n
é-

M
ed

iu
m

0
.0

0
0
.0

3
4
9
4
3
.6

0
-

-
-

0
.0

3
0
.2

3
2
2
4
6
.3

0

M
o
n
ta

n
é-

A
ll

0
.0

0
0
.0

8
2
2

5
8
5
.9

0
-

-
-

0
.0

9
0
.3

7
9
8
7
2
.4

0

S
a
lh

i-
V

R
P

S
P

D
T

L
0
.0

0
0
.1

4
6
2
9
.3

0
0
.1

8
0
.1

9
1
1
5
5
.1

0
0
.0

0
0
.2

1
8
9
1
.5

0

P
o
la

t-
V

R
P

S
P

D
T

L
-

-
-

0
.0

0
0
.1

4
1
0
4
4
.4

0
-0

.1
5

0
.1

6
5
2
.1

0

T
a
b

le
3
:

C
om

p
ar

is
on

of
th

e
re

su
lt

s
of

A
L

N
S

-P
R

to
th

os
e

o
f

th
e

st
a
te

-o
f-

th
e-

a
rt

V
R

P
S

P
D

a
n

d
V

R
P

S
P

D
T

L
h

eu
ri

st
ic

s
fr

o
m

th
e

li
te

ra
tu

re
o
n

th
e

S
a
lh

i-
V

R
P

S
P

D
,

D
et

h
lo

ff
,

M
on

ta
n

é-
M

ed
iu

m
,

M
on

ta
n

é-
A

ll
,

S
al

h
i-

V
R

P
S

P
D

T
L

,
a
n

d
P

o
la

t-
V

R
P

S
P

D
T

L
b

en
ch

m
a
rk

se
ts

.

20

It is further noteworthy, that we are able to improve two previous BKS on set Salhi-VRPSPDTL

during our entire testing activities (see Table A.4 in Appendix A). The robustness of our ALNS-PR

is indicated by the small deviations of the average solution quality to the best solution quality.

3.4.2 Results on VRPSPDTW instances

Table 4 shows an aggregated view on the performance of ALNS-PR and WMZS (Wang, Mu, Zhao,

and Sutherland 2015) on the VRPSPDTW benchmark sets Wang-Medium and Wang-Large. For

WMZS, the results are based on 66 threads and the time of the best run. The total number of runs

performed is unknown. In addition to the previously reported measures, we provide for each method

and set of instances, the total absolute deviation of the number of employed vehicles in the best

solution to the best-known vehicle number (
°

∆m).

WMZS ALNS-PR

Benchmark
°

∆m Avg. ∆b(%) tc(s)
°

∆m Avg. ∆b(%) tc(s)

Wang-Medium 0 1.12 3961.32 � ? -17 -2.32 421.20

Wang-Large 0 0.00 170 326.86 � ? -102 -16.93 19 076.30

Table 4: Comparison of the results of ALNS-PR to those of WMZS on the VRPSPDTW benchmark sets
Wang-Medium and Wang-Large.

On benchmark Wang-Medium, our ALNS-PR is able to reduce the number of employed vehicles

for 17 out of 56 instances. On each of the remaining instances, we match the best-known vehicle

number and significantly reduce the associated traveled distance for 31 instances (see Table A.6 in

Appendix A). The average gaps of the best solution quality to the BKS are calculated across all

instances where the reported vehicle number is equal to the previous best-known number of vehicles.

For ALNS-PR, we note an average improvement of the previous BKS of �2.32%.

On set Wang-Large, we reduce the number of vehicles for 22 out of 30 instances by an average count

of five vehicles. For the remaining instances, we match the previous best-known vehicle number and

significantly reduce the associated traveled distance. In contrast to Wang-Medium, we now consider

all instances for calculating the average gap of the best solution quality to the BKS, i.e., even instances

for which we obtain a smaller number of vehicles. In general, a reduction of the number of employed

vehicles may increase the traveled distance. However, as shown in Table A.7 in Appendix A, for each

except one instance where we employ fewer vehicles, we also achieve a notable reduction of the previous

best traveled distance as reported by WMZS. On average, we observe a gap of the best solution quality

to the BKS of �16.93%.

Finally, it is remarkable that on both benchmark sets, ALNS-PR spends in total only a fraction

of the time required by a single run of algorithm WMZS.

3.4.3 Results on VRPDDP instances

In this section, we analyze the performance of our ALNS-PR on the VRPDDP benchmarks Nagy1,

Nagy2, Nagy3, Polat-VRPDDP1, and Polat-VRPDDP2. To this end, we compare our results on these

instances to those of the algorithms NWSA (Nagy, Wassan, Speranza, and Archetti 2015) and P (cp.

Section 3.4.1).

With respect to NWSA, the authors initially conducted experiments using a reactive tabu search

algorithm that first determines a VRPSPD solution, which is then transformed into a VRPMDP

21

NWSA P ALNS-PR

Benchmark Avg. ∆b(%) tc(s) Avg. ∆b(%) tc(s)
°
nd Avg. ∆b(%) tc(s)

Nagy1 3.98 11.99 0.00 1248.40 � ? 36 -1.42 586.50

Nagy2 2.86 10.25 0.00 2500.10 � ? 865 -0.40 490.40

Nagy3 - - 0.00 2848.00 � ? 1743 -0.61 351.30

Polat-VRPDDP1 - - 0.00 73.50 � ? 23 -0.06 348.20

Polat-VRPDDP2 - - 0.01 3037.98 � ? 12 -0.03 5378.30

Table 5: Comparison of the results of ALNS-PR to those of the heuristics of NWSA and P on the VRPDDP
benchmark sets Nagy1, Nagy2, Nagy3, Polat-VRPDDP1, and Polat-VRPDDP2.

solution with twice as many customers (cp. Section 2). Subsequently, the authors develop several

algorithmic variants that duplicate not all but only those customers identified to be promising for

division according to the insights gained from the previous experiments. The following comparison

with NWSA is based on the algorithmic version called DVA, which additionally makes use of an

operator that allows for dividing customers during the execution of the algorithm and showed the best

performance on average. The results reported for NWSA are based on a single run and the associated

run-time. Unfortunately, we could not obtain a Passmark score for the processor used by NWSA

(UltraSPARC-IIIi). Following P, we use an equivalent Intel Pentium 4 processor running at 1.90 GHz

(Passmark score: 209) to translate the run-times reported by NWSA.

Table 5 shows the aggregated results of NWSA, P, and ALNS-PR on the different VRPDDP

instance sets. P and ALNS-PR provide solutions for each set of VRPDDP benchmark instances;

NWSA has only been applied to the sets Nagy1 and Nagy2. Therefore, we do not report results for

NWSA on set Nagy3. For ALNS-PR, we additionally report the total number of customers that have

been divided in the best solutions on each benchmark (
°
nd). Unfortunately, this measure is neither

reported for NWSA nor P.

On the instances of sets Nagy1, Nagy2, and Nagy3, algorithm P is able to match or significantly

improve each previous BKS reported by the authors NWSA. Our ALNS-PR further improves the

results of P by �1.42% (Nagy1), �0.40% (Nagy2), and �0.61% (Nagy3) on average while showing

notably faster computation times. More precisely, the total time spent by ALNS-PR is significantly

lower than the time required to obtain the best solution by a single run of method P on each of the three

benchmarks. This is even more remarkable taking into account our more restrictive interpretation of

service times in case of divided customers on these instances. As shown in Table A.8 in Appendix A,

our ALNS-PR is able to improve the previous BKS for 20 instances in Nagy1, for 20 instances in

Nagy2, and for 26 instances in Nagy3 out of 28 instances each. Moreover, only roughly 1% of all

customers are divided on set Nagy1, 27% on Nagy2 and roughly 55% on Nagy3. Interestingly, NWSA

report a total of 61 divided customers on Nagy1 for their basic approach while only 36 customers

are identified by ALNS-PR to be divided. This might hint at a better capability of our ALNS-PR to

identify and reassemble partial customers that have been unnecessarily divided in the course of the

search.

Our ALNS-PR is superior to P also on the recently introduced VRPDDP benchmarks Polat-

VRPDDP1 and Polat-VRPDDP2. We improve the previous best results by �0.06% and �0.03%

on average, and obtain seven and two new BKS, respectively (see Tables A.9 and A.10 in Ap-

pendix A). Moreover, from a single-run perspective, ALNS-PR is roughly twice as fast as P on

set Polat-VRPDDP1 and nearly six times as fast on set Polat-VRPDDP2.

22

3.4.4 Results on VRPDDPTW instances

In Table 6, we finally provide detailed results on the newly generated VRPDDPTW instances as com-

parison for future methods that address the VRPDDPTW. Moreover, in order to analyze the savings

achievable by dividing customer demands, we compare the VRPDDPTW solutions to VRPSPDTW

solutions obtained by our ALNS-PR on the new instances. We provide for each instance, the name

and the number of customers, and for both problem types, the number of employed vehicles (m) and

the best solution found in ten runs (fb). For the VRPDDPTW, we additionally report the absolute

deviation of the number of employed vehicles in the best solution to the vehicle number in the corre-

sponding best VRPSPDTW solution, the number of divided customers in the best solution (nd), the

percentage gap of the best solution to the best VRPSPDTW solution (∆b), and the average computing

time (ta) in seconds.

Out of 56 instances, our ALNS-PR identifies 38 instances for which the division of demands is

beneficial. In total, 652 customers are divided, allowing for a reduction of the number of employed

vehicles by 23 compared to the VRPSPDTW case. On average, the traveled distance on the instances

with an equal number of vehicles can be improved by �1.83% if dividing demands is permitted.

Finally, our ALNS-PR shows reasonable computation times of less than one minute on average.

4 Conclusion

We present an adaptive large neighborhood search algorithm combined with a path relinking approach,

called ALNS-PR, to address a class of VRPs with simultaneous pickup and delivery (VRPSPD).

In extensive numerical studies, we first demonstrate the usefulness of the proposed algorithmic

components. We show that the omission of each component leads to a decrease in solution quality.

Moreover, we find that especially the hybridization of our ALNS component with the proposed PR

implementation, and the introduction of an innovative ALNS operator, which explicitly considers the

load characteristics of the VRPSPD and its variants, significantly accelerates the convergence rate of

the search.

The competitiveness of the proposed approach is demonstrated on benchmark instances from the

literature. On established instances, ALNS-PR can compete with the state-of-the-art approaches

for the corresponding problems. With respect to the more recently introduced problem variants,

especially on VRPSPDTL, VRPSPDTW, and VRPDDP instances, our method proves to be superior

to the majority of comparison algorithms and provides numerous new best solutions.

Our ALNS-PR is therefore suitable to tackle the practical application occurring at DHL Freight

in Sweden that particularly motivated this paper. There, up to 50 000 customers need to be served

from multiple depots. The scale of the resulting multi-depot VRPSPD suggests its decomposition

into several VRPSPDs that can be solved independently. Future research thus needs to address the

necessary algorithmic modifications to appropriately decompose a corresponding large-scale instance.

23

ALNS-PR

VRPSPDTW VRPDDPTW

Inst. n m fb m ∆m nd fb ∆b(%) ta (s)

HS-cdp101 100 23 2345.75 23 0 0 2345.75 0.00 27.04

HS-cdp102 100 23 1840.89 23 0 0 1840.89 0.00 31.10

HS-cdp103 100 22 1799.17 22 0 17 1761.04 -2.12 30.44

HS-cdp104 100 22 1752.16 22 0 8 1652.09 -5.71 34.93

HS-cdp105 100 23 2085.45 23 0 0 2085.45 0.00 22.86

HS-cdp106 100 22 2772.87 22 0 0 2772.87 0.00 27.39

HS-cdp107 100 22 2684.66 22 0 0 2684.66 0.00 25.92

HS-cdp108 100 22 2378.12 22 0 0 2378.12 0.00 25.79

HS-cdp109 100 22 1982.66 22 0 0 1982.66 0.00 29.35

HS-cdp201 100 17 1611.83 17 0 7 1486.13 -7.80 66.93

HS-cdp202 100 17 1461.67 16 -1 13 1803.94 23.42 52.97

HS-cdp203 100 17 1422.22 16 -1 13 1411.96 -0.72 71.46

HS-cdp204 100 17 1394.54 16 -1 12 1385.99 -0.61 60.97

HS-cdp205 100 17 1433.86 16 -1 26 2202.92 53.64 73.98

HS-cdp206 100 17 1421.85 16 -1 24 2102.17 47.85 50.61

HS-cdp207 100 17 1409.30 17 0 6 1396.02 -0.94 57.86

HS-cdp208 100 17 1421.41 16 -1 17 2184.17 53.66 64.15

HS-rdp101 100 22 1965.84 22 0 0 1965.84 0.00 25.92

HS-rdp102 100 21 2031.76 21 0 0 2031.76 0.00 36.01

HS-rdp103 100 21 1662.40 21 0 0 1662.40 0.00 35.77

HS-rdp104 100 20 1906.62 20 0 0 1906.62 0.00 42.75

HS-rdp105 100 21 1967.15 21 0 0 1967.15 0.00 26.10

HS-rdp106 100 20 2467.94 20 0 0 2467.94 0.00 39.30

HS-rdp107 100 20 1962.77 20 0 27 1925.47 -1.90 38.56

HS-rdp108 100 20 1623.36 20 0 4 1608.53 -0.91 36.84

HS-rdp109 100 21 1668.95 21 0 0 1668.95 0.00 31.83

HS-rdp110 100 20 2239.71 20 0 0 2239.71 0.00 35.61

HS-rdp111 100 21 1637.16 21 0 0 1637.16 0.00 33.30

HS-rdp112 100 20 1657.49 20 0 0 1656.78 -0.04 32.43

HS-rdp201 100 15 2337.05 15 0 10 2090.14 -10.57 52.64

HS-rdp202 100 15 1572.11 14 -1 39 1936.52 23.18 105.56

HS-rdp203 100 15 1635.94 14 -1 28 2256.06 37.91 113.51

HS-rdp204 100 15 1314.99 14 -1 17 1675.77 27.44 108.30

HS-rdp205 100 15 1671.05 14 -1 43 2202.27 31.79 92.56

HS-rdp206 100 15 1547.44 14 -1 31 1854.27 19.83 94.33

HS-rdp207 100 15 1350.41 14 -1 34 1678.72 24.31 98.72

HS-rdp208 100 15 1333.82 14 -1 31 1415.20 6.10 109.50

HS-rdp209 100 15 1609.23 14 -1 22 2069.46 28.60 79.36

HS-rdp210 100 15 1544.21 14 -1 41 1965.03 27.25 116.10

HS-rdp211 100 15 1365.45 15 0 11 1209.21 -11.44 117.33

HS-rcdp101 100 23 2340.21 23 0 1 2336.11 -0.18 23.69

HS-rcdp102 100 22 2435.76 22 0 19 2320.66 -4.73 32.72

HS-rcdp103 100 22 2173.06 22 0 10 2038.64 -6.19 45.59

HS-rcdp104 100 22 2011.60 22 0 12 1967.52 -2.19 56.28

HS-rcdp105 100 22 2588.82 22 0 0 2588.82 0.00 22.42

HS-rcdp106 100 22 2386.96 22 0 1 2374.35 -0.53 28.48

HS-rcdp107 100 22 2121.41 22 0 11 2033.68 -4.14 36.16

HS-rcdp108 100 22 2021.30 22 0 7 1999.16 -1.10 37.99

HS-rcdp201 100 16 2004.33 15 -1 17 2859.48 42.67 72.38

HS-rcdp202 100 16 1716.64 15 -1 12 1672.16 -2.59 82.14

HS-rcdp203 100 16 1588.73 15 -1 17 1518.74 -4.41 64.54

HS-rcdp204 100 16 1584.29 15 -1 10 1464.00 -7.59 91.59

HS-rcdp205 100 16 1874.17 15 -1 8 2239.42 19.49 60.44

HS-rcdp206 100 16 1693.38 15 -1 16 1973.35 16.53 78.13

HS-rcdp207 100 16 1689.49 15 -1 17 1602.60 -5.14 80.79

HS-rcdp208 100 16 1572.66 15 -1 13 1445.75 -8.07 82.49

Avg. -1.83 56.28
°

-23 652

Table 6: Results on the newly generated VRPDDPTW benchmark HS.

24

References

O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, Part I: Route construction and local

search algorithms. Transportation Science, 39(1):104–118, 2005.

N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Operational Research Quarterly,

20(3):309–318, 1969.

N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. 1979.

G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of delivery points.

Operations Research, 12(4):568–581, 1964.

J. Dethloff. Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and

pick-up. OR Spectrum, 23(1):79–96, 2001.

A. E. Fallahi, C. Prins, and R. W. Calvo. A memetic algorithm and a tabu search for the multi-compartment

vehicle routing problem. Computers & Operations Research, 35(5):1725–1741, 2008.

T. A. Feo and M. G. Resende. A probabilistic heuristic for a computationally difficult set covering problem.

Operations Research Letters, 8(2):67–71, 1989.

H. Gehring and J. Homberger. A parallel hybrid evolutionary metaheuristic for the vehicle routing problem

with time windows. In K. Miettinen, M. Mkel, and J. Toivanen, editors, Proceedings of EUROGEN99,

number A2, pages 57–64. Springer, Berlin, 1999.

F. Glover. Tabu Search and Adaptive Memory Programming — Advances, Applications and Challenges, pages

1–75. Springer US, Boston, MA, 1997.

D. Goeke and M. Schneider. Routing a mixed fleet of electric and conventional vehicles. European Journal of

Operational Research, 245(1):81 – 99, 2015.

F. P. Goksal, I. Karaoglan, and F. Altiparmak. A hybrid discrete particle swarm optimization for vehicle routing

problem with simultaneous pickup and delivery. Computers & Industrial Engineering, 65(1):39–53, 2013.

V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic. An adaptive large neighborhood search heuristic for

two-echelon vehicle routing problems arising in city logistics. Computers & Operations Research, 39(12):

3215–3228, 2012.

S. C. Ho and M. Gendreau. Path relinking for the vehicle routing problem. Journal of Heuristics, 12(1):55–72,

2006.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of

the American Mathematical Society, 7, 1956.

S. Lin. Computer solutions of the traveling salesman problem. The Bell System Technical Journal, 44(10):

2245–2269, 1965.

F. A. T. Montané and R. D. Galvão. A tabu search algorithm for the vehicle routing problem with simultaneous

pick-up and delivery service. Computers & Operations Research, 33(3):595–619, 2006.

Y. Nagata, O. Bräysy, and W. Dullaert. A penalty-based edge assembly memetic algorithm for the vehicle

routing problem with time windows. Computers & Operations Research, 37(4):724–737, 2010.

G. Nagy, N. A. Wassan, M. G. Speranza, and C. Archetti. The vehicle routing problem with divisible deliveries

and pickups. Transportation Science, 49(2):271–294, 2015.

V.-P. Nguyen, C. Prins, and C. Prodhon. Solving the two-echelon location routing problem by a GRASP

reinforced by a learning process and path relinking. European Journal of Operational Research, 216(1):

113–126, 2012.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations Research,

34(8):2403–2435, 2007.

O. Polat. A parallel variable neighborhood search for the vehicle routing problem with divisible deliveries and

pickups. Computers & Operations Research, 85:71–86, 2017.

25

O. Polat, C. B. Kalayci, O. Kulak, and H.-O. Günther. A perturbation based variable neighborhood search

heuristic for solving the vehicle routing problem with simultaneous pickup and delivery with time limit.

European Journal of Operational Research, 242(2):369–382, 2015.

J. Potvin and J. Rousseau. An exchange heuristic for routeing problems with time windows. Journal of the

Operational Research Society, 46(12):1433–1446, 1995.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem

with time windows. Transportation Science, 40(4):455–472, 2006a.

S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing problems with backhauls.

European Journal of Operational Research, 171(3):750–775, 2006b.

S. Salhi and G. Nagy. A cluster insertion heuristic for single and multiple depot vehicle routing problems with

backhauling. The Journal of the Operational Research Society, 50(10):1034–1042, 1999.

M. W. P. Savelsbergh. The vehicle routing problem with time windows: Minimizing route duration. ORSA

Journal on Computing, 4(2):146–154, 1992.

M. Schneider, B. Sand, and A. Stenger. A note on the time travel approach for handling time windows in vehicle

routing problems. Computers & Operations Research, 40(10):2564–2568, 2013.

M. Schneider, A. Stenger, and J. Hof. An adaptive VNS algorithm for vehicle routing problems with intermediate

stops. OR Spectrum, 37(2):353–387, 2015.

P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing problems. Technical

report, PES Group, Department of Computer Science, University of Strathclyde, Glasgow, Scotland, 1997.

P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In M. Maher

and J.-F. Puget, editors, Principles and Practice of Constraint Programming CP98, volume 1520 of Lecture

Notes in Computer Science, pages 417–431. Springer Berlin Heidelberg, 1998.

M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints.

Operations Research, 35(2):254–265, 1987.

J. R. Stock. Reverse logistics: white paper. Council of Logistics Management, 1992.

A. Subramanian, L. M. A. Drummond, C. Bentes, L. S. Ochi, and R. Farias. A parallel heuristic for the

vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research, 37

(11):1899–1911, 2010.

A. Subramanian, E. Uchoa, and L. S. Ochi. A hybrid algorithm for a class of vehicle routing problems. Computers

& Operations Research, 40(10):2519–2531, 2013.

T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A unified solution framework for multi-attribute vehicle

routing problems. European Journal of Operational Research, 234(3):658–673, 2014.

C. Wang, D. Mu, F. Zhao, and J. W. Sutherland. A parallel simulated annealing method for the vehicle routing

problem with simultaneous pickupdelivery and time windows. Computers & Industrial Engineering, 83

(Complete):111–122, 2015.

H.-F. Wang and Y.-Y. Chen. A genetic algorithm for the simultaneous delivery and pickup problems with time

window. Computers & Industrial Engineering, 62(1):84–95, 2012.

E. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis. An adaptive memory methodology for the vehicle

routing problem with simultaneous pick-ups and deliveries. European Journal of Operational Research,

202(2):401–411, 2010.

26

A Detailed results on the benchmark instances from the literature

In the following, we present the detailed results on the benchmark instances from the literature

structured according to problem type.

VRPSPD Tables A.1, A.2, and A.3 show detailed comparisons of our ALNS-PR with the state-of-

the-art approaches for the VRPSPD on the benchmarks Salhi-VRPSPD, Dethloff, and Montané-All

(including Montané-Medium), respectively.

We report for each instance, the name, the number of customers (n), and the BKS from the

literature. For each method, we provide the percentage gap of the best solution found in several runs

to the BKS (∆b) and the average computing time (ta), the time elapsed when the best solution was

found (tb), the average time elapsed when the best solution was found (tab), or the total time of the

best run (t) in seconds (see Section 3.4 for details on how to interpret the results of the comparison

algorithms). In Table A.3, the percentage gap of the average solution quality to the BKS (∆a) is

additionally given. Values in bold indicate the best solution quality for each instance. Averages of

the gaps to the BKS and the run-times are reported after the detailed results per instance at the end

of each table.

VRPSPDTL In Tables A.4 and A.5, we present the detailed results on the VRPSPDTL benchmarks

Salhi-VRPSPDTL and Polat-VRPSPDTL, respectively.

In the course of our computational experiments, we were able to obtain two new BKS on the

instances of Salhi-VRPSPDTL. In addition to the previously reported measures, we therefore report in

Table A.4, the best solutions encountered during our entire testing activities (f) and the corresponding

percentage gaps to the previous BKS (∆) in column ALNS-PR.

On set Polat-VRPSPDTL, we improve three out of seven previous BKS based on ten runs. The

corresponding absolute solution values are given in column fb of Table A.5.

VRPSPDTW Tables A.6 and A.7 show the detailed results on the VRPSPDTW instance sets

Wang-Medium and Wang-Large, respectively.

In addition to the previous measures, we report the number of employed vehicles in the best

solution (m) and the absolute deviation of the number of vehicles in the best solution found to the

previous best-known vehicle number (∆m) for each instance and solution method.

With respect to Table A.7, note that we identified the WMZS solutions on instances RC2 8 1 and

RC2 10 1 to be infeasible (indicated by asterisks). The average route lengths of 1789.81 and 2119.78

calculated for both solutions exceed the latest arrival times at the depot given in the corresponding

instances of 1573 and 1821, respectively. Therefore, we omit those instances when analyzing the

solution quality of both comparison algorithms.

VRPDDP Finally, we report our detailed results for the VRPDDP on the benchmarks Nagy1,

Nagy2, and Nagy3 in Table A.8 and on the benchmarks Polat-VRPDDP1 and Polat-VRPDDP2 in

Tables A.9 and A.10, respectively. We report the same measures as in the previous tables, and

additionally for ALNS-PR, the number of customers that have been divided in the best solution found

(nd) for each instance.

1

Z
T

K
S

D
B

O
F

G
K

A
S

U
O

V
C

G
P

P
K

K
G

A
L
N
S
-P

R

In
st

.
n

B
K

S
∆

b
(%

)
tb

(s
)

∆
b
(%

)
ta

(s
)

∆
b
(%

)
ta

(s
)

∆
b
(%

)
ta

(s
)

∆
b
(%

)
ta

(s
)

∆
b
(%

)
t(

s)
∆

b
(%

)
ta

(s
)

C
M

T
1
X

5
0

4
6
6
.7

7
0
.6

5
2
.1

0
0
.0
0

2
.2

8
0
.0
0

1
.3

0
0
.0
0

2
.0

8
0
.0
0

4
3
.2

0
0
.0
0

1
6
.5

2
0
.0
0

1
3
.3

1

C
M

T
1
Y

5
0

4
6
6
.7

7
0
.6

5
3
.8

0
0
.0
0

2
.2

7
0
.0
0

1
.4

0
0
.0
0

1
.9

7
0
.0
0

4
2
.6

0
0
.0
0

8
.2

6
0
.0
0

1
2
.2

0

C
M

T
2
X

7
5

6
8
4
.2

1
0
.0
0

5
.4

0
0
.0
0

6
.4

4
0
.0
0

3
5
.6

0
0
.0
0

1
2
.7

9
0
.0
0

7
9
.2

0
0
.0
0

4
4
.9

2
0
.0
0

3
2
.0

3

C
M

T
2
Y

7
5

6
8
4
.2

1
0
.0
0

6
.8

0
0
.0
0

6
.4

1
0
.0
0

3
6
.8

0
0
.0
0

1
0
.8

3
0
.0
0

8
1
.0

0
0
.0
0

4
6
.7

3
0
.0
0

3
4
.9

0

C
M

T
3
X

1
0
0

7
2
1
.2

7
0
.0
0

1
1
.9

0
0
.0
0

1
2
.1

0
0
.0
0

4
1
.7

0
0
.0
0

1
7
.6

9
0
.0
0

1
0
1
.4

0
0
.0
0

5
2
.1

8
0
.0
0

7
2
.5

5

C
M

T
3
Y

1
0
0

7
2
1
.2

7
0
.0
0

1
1
.0

0
0
.0
0

1
2
.2

8
0
.0
0

5
5
.5

0
0
.0
0

1
7
.6

1
0
.0
0

1
0
7
.4

0
0
.0
0

4
6
.0

9
0
.0
0

1
2
7
.4

3

C
M

T
1
2
X

1
0
0

6
6
2
.2

2
0
.0
0

9
.3

0
0
.0
0

1
0
.2

9
0
.1

1
1
4
1
.4

0
0
.0
0

9
.0

7
0
.0
0

1
0
4
.4

0
0
.0
0

3
3
.9

1
0
.0
0

3
9
.9

7

C
M

T
1
2
Y

1
0
0

6
6
2
.2

2
0
.0
0

4
.8

0
0
.0
0

1
0
.7

6
0
.1

9
1
0
5
.4

0
0
.0
0

9
.3

4
0
.0
0

1
0
1
.4

0
0
.0
0

3
3
.3

4
0
.0
0

4
1
.8

2

C
M

T
1
1
X

1
2
0

8
3
3
.9

2
0
.0
0

2
1
.2

0
0
.0
0

1
8
.8

7
0
.0
0

2
4
4
.9

0
1
.4

8
5
1
.8

2
0
.0
0

1
6
5
.0

0
0
.0
0

3
3
.9

1
0
.0
0

9
9
.2

9

C
M

T
1
1
Y

1
2
0

8
3
3
.9

2
0
.0
0

1
4
.4

0
0
.0
0

1
9
.0

3
0
.0
0

3
6
8
.9

0
1
.4

8
4
8
.6

3
0
.0
0

1
5
9
.6

0
0
.0
0

4
9
.6

4
0
.0
0

9
8
.8

3

C
M

T
4
X

1
5
0

8
5
2
.4

6
0
.0
0

2
9
.6

0
0
.0
0

3
0
.8

9
0
.0

4
3
8
0
.2

0
0
.0
0

9
8
.0

3
0
.0
0

2
4
9
.6

0
0
.0
0

1
1
8
.9

7
0
.0
0

1
8
7
.3

0

C
M

T
4
Y

1
5
0

8
5
2
.4

6
0
.0
0

2
7
.4

0
0
.0
0

3
1
.6

1
0
.0
0

4
1
4
.6

0
0
.0
0

8
0
.6

3
0
.0
0

2
3
7
.0

0
0
.0
0

1
3
6
.3

7
0
.0
0

2
1
6
.2

3

C
M

T
5
X

1
9
9

1
0
2
9
.2

5
0
.1

3
6
2
.8

0
0
.0
0

7
1
.5

0
0
.4

1
5
0
0
.0

0
0
.0
0

1
7
8
6
.7

4
0
.0
0

4
7
9
.4

0
0
.1

3
5
5
4
.3

9
0
.0

6
4
0
7
.4

7

C
M

T
5
Y

1
9
9

1
0
2
9
.2

5
0
.1

3
4
7
.7

0
0
.0
0

6
9
.5

8
0
.6

6
5
0
0
.0

0
0
.0
0

1
7
2
6
.1

8
0
.0
0

3
9
6
.0

0
0
.1

3
2
8
7
.0

5
0
.0
0

4
4
8
.5

2

A
v
g
.

0
.1
1

1
8
.4
4

0
.0
0

2
1
.7
4

0
.1
0

2
0
1
.9
8

0
.2
1

2
7
6
.6
7

0
.0
0

1
6
7
.6
6

0
.0
2

1
0
4
.4
5

0
.0
0

1
3
0
.8
5

P
ro

ce
ss

o
r

ty
p

e
T

5
5
0
0

X
eo

n
X

eo
n

i7
O

p
te

ro
n

2
5
0

C
o
re

2
D

u
o

T
5
7
5
0

i5
-6

6
0
0

P
ro

ce
ss

o
r

sp
ee

d
1
.6

6
G

H
z

2
.6

6
G

H
z

3
.1

6
G

H
z

2
.9

3
G

H
z

2
.4

G
H

z
2
.0

0
G

H
z

3
.3

0
G

H
z

P
a
ss

m
a
rk

sc
o
re

5
8
4

1
0
1
5

1
3
4
5

1
2
9
7

6
4
9

6
7
8

2
0
9
8

tc
(s

)
5
.1
3
�

?
1
0
.5
2
�

2
5
6
�

5
0

1
2
9
.4
9
�

1
0

1
7
1
.0
4
�

1
0

5
1
.8
6
�

1
0

3
3
.7
5
�

1
0

1
3
0
.8
5
�

1
0

T
a
b

le
A

.1
:

D
et

ai
le

d
re

su
lt

s
of

A
L

N
S

-P
R

a
n

d
th

e
st

a
te

-o
f-

th
e-

a
rt

h
eu

ri
st

ic
s

fo
r

th
e

V
R

P
S

P
D

o
n

th
e

S
a
lh

i-
V

R
P

S
P

D
b

en
ch

m
a
rk

.

2

ZTK SDBOF GKA P ALNS-PR

Inst. n BKS ∆b(%) tb(s) ∆b(%) ta (s) ∆b(%) ta (s) ∆b(%) tab(s) ∆b(%) ta (s)

SCA3-0 50 635.62 0.00 2.50 0.00 2.31 0.00 4.90 0.00 4.77 0.00 19.37

SCA3-1 50 697.84 0.00 2.50 0.00 2.28 0.00 0.80 0.00 5.76 0.00 14.59

SCA3-2 50 659.34 0.00 2.90 0.00 2.14 0.00 0.40 0.00 8.22 0.00 22.38

SCA3-3 50 680.04 0.00 2.30 0.00 2.49 0.00 1.00 0.00 6.24 0.00 11.74

SCA3-4 50 690.50 0.00 2.90 0.00 2.18 0.00 0.30 0.00 3.97 0.00 11.95

SCA3-5 50 659.90 0.00 3.00 0.00 2.23 0.00 2.00 0.00 5.70 0.00 16.41

SCA3-6 50 651.09 0.00 3.10 0.00 2.51 0.00 0.80 0.00 5.15 0.00 17.31

SCA3-7 50 659.17 0.00 2.80 0.00 2.49 0.00 1.60 0.00 6.67 0.00 12.38

SCA3-8 50 719.47 0.00 3.50 0.00 2.26 0.00 0.50 0.00 4.96 0.00 12.73

SCA3-9 50 681.00 0.00 4.70 0.00 1.90 0.00 0.80 0.00 8.50 0.00 15.45

SCA8-0 50 961.50 0.00 2.70 0.00 3.37 0.00 4.80 0.00 5.33 0.00 11.69

SCA8-1 50 1049.65 0.00 3.80 0.00 2.89 0.00 6.80 0.00 6.74 0.00 7.33

SCA8-2 50 1039.64 0.00 3.90 0.00 2.38 0.00 10.20 0.00 5.45 0.00 9.42

SCA8-3 50 983.34 0.00 2.60 0.00 2.98 0.00 13.00 0.00 8.39 0.00 9.24

SCA8-4 50 1065.49 0.00 2.40 0.00 2.81 0.00 3.00 0.00 6.07 0.00 7.96

SCA8-5 50 1027.08 0.00 3.40 0.00 3.31 0.00 4.10 0.00 5.57 0.00 13.51

SCA8-6 50 971.82 0.00 2.70 0.00 3.51 0.00 1.60 0.00 6.98 0.00 10.09

SCA8-7 50 1051.28 0.00 5.10 0.00 3.12 0.00 3.40 0.00 9.77 0.00 10.38

SCA8-8 50 1071.18 0.00 3.60 0.00 2.92 0.00 0.80 0.00 7.06 0.00 10.21

SCA8-9 50 1060.50 0.00 4.80 0.00 2.18 0.00 7.30 0.00 5.82 0.00 9.09

CON3-0 50 616.52 0.00 4.70 0.00 3.12 0.00 2.10 0.00 6.12 0.00 8.21

CON3-1 50 554.47 0.00 2.20 0.00 2.83 0.00 1.30 0.00 4.01 0.00 14.49

CON3-2 50 518.00 0.00 3.10 0.00 2.77 0.00 1.30 0.00 9.06 0.00 10.42

CON3-3 50 591.19 0.00 3.20 0.00 2.34 0.00 0.50 0.00 6.90 0.00 22.12

CON3-4 50 588.79 0.00 2.30 0.00 2.63 0.00 3.20 0.00 3.12 0.00 9.67

CON3-5 50 563.70 0.00 3.70 0.00 2.69 0.00 0.40 0.00 6.17 0.00 8.95

CON3-6 50 499.05 0.00 3.70 0.00 2.75 0.00 2.30 0.00 9.39 0.00 10.77

CON3-7 50 576.48 0.00 1.90 0.00 2.75 0.00 2.60 0.00 4.69 0.00 11.05

CON3-8 50 523.05 0.00 3.80 0.00 2.46 0.00 1.00 0.00 3.89 0.00 8.03

CON3-9 50 578.25 0.00 2.20 0.00 3.37 0.00 2.90 0.00 5.70 0.00 8.02

CON8-0 50 857.17 0.00 4.40 0.00 3.65 0.00 5.20 0.00 4.86 0.00 5.21

CON8-1 50 740.85 0.00 3.30 0.00 3.02 0.00 2.90 0.00 6.77 0.00 5.69

CON8-2 50 712.89 0.00 2.70 0.00 3.08 0.00 2.10 0.00 3.83 0.00 9.50

CON8-3 50 811.07 0.00 2.80 0.00 3.99 0.00 2.80 0.00 6.49 0.00 4.69

CON8-4 50 772.25 0.00 2.80 0.00 3.69 0.00 3.60 0.00 6.70 0.00 7.40

CON8-5 50 754.88 0.00 5.70 0.00 4.18 0.00 3.40 0.00 6.31 0.00 5.84

CON8-6 50 678.92 0.00 3.40 0.00 4.09 0.00 7.90 0.00 4.80 0.00 5.33

CON8-7 50 811.96 0.00 2.50 0.00 4.03 0.00 3.00 0.00 9.22 0.00 4.12

CON8-8 50 767.53 0.00 3.20 0.00 3.42 0.00 3.20 0.00 4.93 0.00 4.98

CON8-9 50 809.00 0.00 3.80 0.00 3.48 0.00 2.40 0.00 6.47 0.00 4.81

Avg. 0.00 3.27 0.00 2.92 0.00 3.06 0.00 6.16 0.00 10.56

Processor type T5500 Xeon Xeon Xeon E5420 i5-6600

Processor speed 1.66 GHz 2.66 GHz 3.16 GHz 2.50 GHz 3.30 GHz

Passmark score 584 1015 1345 1073 2098

tc(s) 0.91 � ? 1.41 � 256 � 50 1.96 � 10 3.15 � 6 � ? 10.56 � 10

Table A.2: Detailed results of ALNS-PR and the state-of-the-art heuristics for the VRPSPD on the Dethloff
benchmark.

3

Z
T

K
S

D
B

O
F

S
U

O
V

C
G

P
P

A
L
N
S
-P

R

In
st

.
n

B
K

S
∆

b
(%

)
tb

(s
)

∆
b
(%

)
∆

a
(%

)
ta

(s
)

∆
b
(%

)
∆

a
(%

)
ta

(s
)

∆
b
(%

)
∆

a
(%

)
ta

(s
)

∆
b
(%

)
ta

b
(s

)
∆

b
(%

)
∆

a
(%

)
ta

(s
)

r1
0
1

1
0
0

1
0
0
9
.9

5
0
.0
0

5
.8

0
0
.0
0

0
.0

6
1
5
.8

1
0
.0
0

0
.0

1
6
5
.4

2
0
.0
0

0
.1

6
7
3
.8

0
0
.0
0

3
3
.8

6
0
.0
0

0
.4

9
4
6
.6

1

r2
0
1

1
0
0

6
6
6
.2

0
0
.0
0

7
.9

0
0
.0
0

0
.0
0

1
5
.9

5
0
.0
0

0
.0
0

1
5
.7

1
0
.0
0

0
.0
0

1
4
3
.4

0
0
.0
0

3
0
.5

6
0
.0
0

0
.3

3
1
3
4
.6

7

c1
0
1

1
0
0

1
2
2
0
.1

8
0
.0

7
8
.6

0
0
.0
0

0
.0

4
1
0
.3

9
0
.0
0

0
.0

2
1
2
.9

3
0
.0

7
0
.0

7
6
6
.0

0
0
.0
0

1
5
.6

3
0
.0

7
0
.2

5
5
2
.6

2

c2
0
1

1
0
0

6
6
2
.0

7
0
.0
0

4
.3

0
0
.0
0

0
.0
0

8
.8

3
0
.0
0

0
.0
0

9
.7

7
0
.0
0

0
.0
0

9
7
.8

0
0
.0
0

1
5
.5

5
0
.0
0

0
.0
0

5
8
.9

2

rc
1
0
1

1
0
0

1
0
5
9
.3

2
0
.0
0

1
4
.1

0
0
.0
0

0
.0
0

1
1
.0

7
0
.0
0

0
.0
0

1
6
.8

9
0
.0
0

0
.0
0

7
2
.6

0
0
.0
0

1
8
.2

5
0
.0
0

0
.0
0

4
0
.0

9

rc
2
0
1

1
0
0

6
7
2
.9

2
0
.0
0

1
0
.6

0
0
.0
0

0
.0
0

7
.2

8
0
.0
0

0
.0
0

1
1
.4

2
0
.0
0

0
.0
0

1
1
9
.4

0
0
.0
0

1
8
.8

6
0
.0
0

0
.0

3
8
5
.0

7

R
1

2
1

2
0
0

3
3
5
3
.8

0
0
.6

7
4
5
.1

0
0
.1

9
0
.4

8
6
6
.2

1
0
.0
0

0
.0

4
1
1
4
2
.0

5
0
.0

5
0
.3

2
4
0
6
.2

0
0
.1

9
3
7
0
.8

3
0
.1

7
0
.5

9
2
4
3
.1

5

R
2

2
1

2
0
0

1
6
6
5
.5

8
0
.0
0

4
9
.4

0
0
.0
0

0
.0
0

4
5
.3

0
0
.0
0

0
.0
0

1
4
2
5
.8

8
0
.0
0

0
.0
0

5
3
7
.0

0
0
.0
0

4
7
3
.5

9
0
.0
0

0
.2

9
5
3
3
.6

1

C
1

2
1

2
0
0

3
6
2
8
.5

1
0
.4

2
4
1
.0

0
0
.0

4
0
.2

0
8
7
.3

8
0
.0
0

0
.2

2
2
8
7
4
.5

0
0
.2

5
0
.2

9
4
3
5
.0

0
0
.2

4
9
1
7
.4

3
0
.1

0
0
.3

7
2
6
3
.0

0

C
2

2
1

2
0
0

1
7
2
6
.5

9
0
.0
0

5
6
.4

0
0
.0
0

0
.0
0

6
5
.0

1
0
.0
0

0
.0
0

1
3
6
5
.9

3
0
.0
0

0
.0
0

3
3
1
.2

0
0
.0
0

3
9
8
.3

8
0
.0
0

0
.0

5
4
3
7
.9

5

R
C

1
2

1
2
0
0

3
3
0
3
.7

0
0
.6

0
5
1
.3

0
0
.0

7
0
.4

2
7
1
.7

1
0
.0
0

0
.0

9
1
2
9
3
.5

3
0
.0

2
0
.3

5
4
8
6
.0

0
0
.0

7
4
8
5
.0

5
0
.0
0

0
.1

9
2
6
7
.6

1

R
C

2
2

1
2
0
0

1
5
6
0
.0

0
0
.0
0

2
8
.1

0
0
.0
0

0
.0
0

4
4
.7

1
0
.0
0

0
.0
0

1
3
6
1
.8

7
0
.0
0

0
.0
0

4
4
1
.0

0
0
.0
0

3
9
3
.5

1
0
.0
0

0
.1

3
5
3
2
.2

9

A
v
g
.

0
.1
5

2
6
.8
8

0
.0
2

0
.1
0

3
7
.4
7

0
.0
0

0
.0
3

7
9
9
.6
6

0
.0
3

0
.1
0

2
6
7
.4
5

0
.0
4

2
6
4
.2
9

0
.0
3

0
.2
3

2
2
4
.6
3

P
ro

ce
ss

o
r

ty
p

e
T

5
5
0
0

X
eo

n
i7

O
p

te
ro

n
2
5
0

X
eo

n
E

5
4
2
0

i5
-6

6
0
0

P
ro

ce
ss

o
r

sp
ee

d
1
.6

6
G

H
z

2
.6

6
G

H
z

2
.9

3
G

H
z

2
.4

0
G

H
z

2
.5

0
G

H
z

3
.3

0
G

H
z

P
a
ss

m
a
rk

sc
o
re

5
8
4

1
0
1
5

1
2
9
7

6
4
9

1
0
7
3

2
0
9
8

tc
(s

)
7
.4
8
�

?
1
8
.1
3
�

2
5
6
�

5
0

4
9
4
.3
6
�

1
0

8
2
.7
3
�

1
0

1
3
5
.1
7
�

6
�

?
2
2
4
.6
3
�

1
0

R
1

4
1

4
0
0

9
5
1
9
.4

5
1
.8

1
3
4
5
.3

0
1
.0

5
1
.3

4
4
8
1
.6

1
0
.0
0

0
.2

1
9
1
7
7
.9

0
0
.3

0
0
.7

8
1
4
7
1
.8

0
0
.3

8
1
.0

9
2
2
4
1
.5

7

R
2

4
1

4
0
0

3
5
4
6
.4

9
0
.7

3
1
2
5
.0

0
0
.1

4
0
.3

1
4
5
9
.1

5
0
.0
0

0
.0

8
9
0
8
6
.7

9
0
.0
0

0
.2

4
1
4
7
4
.2

0
0
.0

1
0
.4

8
3
0
6
6
.7

3

C
1

4
1

4
0
0

1
1
0
4
7
.1

9
1
.2

0
2
2
4
.8

0
0
.4

7
0
.6

5
5
4
6
.2

2
0
.0
0

0
.2

6
8
0
1
6
.8

3
0
.2

7
0
.6

0
1
7
8
0
.2

0
0
.3

3
0
.6

4
2
4
5
6
.8

2

C
2

4
1

4
0
0

3
5
3
9
.5

0
0
.2

8
2
3
8
.2

0
0
.1

9
0
.5

5
4
8
8
.5

6
0
.0
0

0
.1

2
1
0
6
9
1
.3

0
0
.0
0

0
.0

5
1
7
8
5
.6

0
0
.1

3
0
.4

2
2
6
0
0
.0

1

R
C

1
4

1
4
0
0

9
4
4
7
.5

3
2
.0

9
1
6
0
.7

0
0
.9

4
1
.2

4
5
1
3
.3

8
0
.0
0

0
.3

2
1
0
8
6
7
.1

0
0
.2

3
0
.6

5
1
7
9
0
.4

0
0
.5

0
1
.1

9
2
5
4
2
.9

4

R
C

2
4

1
4
0
0

3
4
0
3
.7

0
0
.5

9
3
1
5
.7

0
0
.0
0

0
.0

3
4
2
2
.6

1
0
.0
0

0
.0
0

8
3
2
6
.1

8
0
.0
0

0
.0

1
1
4
4
6
.0

0
0
.0
0

0
.1

9
2
1
6
6
.6

5

A
v
g
.
to

t.
0
.4
7

9
6
.2
4

0
.1
7

0
.3
0

1
8
6
.7
3

0
.0
0

0
.0
8

3
6
5
3
.4
4

0
.0
7

0
.2
0

7
1
9
.8
7

0
.0
9

0
.3
7

9
8
7
.2
4

tc
(s

)
2
6
.7
9
�

?
9
0
.3
4
�

2
5
6
�

5
0

2
2
5
8
.5
9
�

1
0

2
2
2
.6
9
�

1
0

9
8
7
.2
4
�

1
0

T
a
b

le
A

.3
:

D
et

ai
le

d
re

su
lt

s
of

A
L

N
S

-P
R

an
d

th
e

st
at

e-
o
f-

th
e-

a
rt

h
eu

ri
st

ic
s

fo
r

th
e

V
R

P
S

P
D

o
n

th
e

M
o
n
ta

n
é-

A
ll

(i
n

cl
u

d
in

g
M

o
n
ta

n
é-

M
ed

iu
m

)
b

en
ch

m
a
rk

.

4

S
U

O
P

K
K

G
A
L
N
S
-P

R
A
L
N
S
-P

R

In
st

.
n

B
K

S
∆

b
(%

)
∆

a
(%

)
ta

(s
)

∆
b
(%

)
∆

a
(%

)
t(

s)
∆

b
(%

)
∆

a
(%

)
ta

(s
)

f
∆

(%
)

C
M

T
6
X

5
0

5
5
5
.4

3
0
.0
0

0
.3

5
1
.0

4
0
.0
0

0
.0
0

4
7
.0

0
0
.0
0

0
.0
0

7
.7

0
5
5
5
.4
3

0
.0

0

C
M

T
6
Y

5
0

5
5
5
.4

3
0
.0
0

0
.3

0
1
.0

8
0
.0
0

0
.0
0

4
7
.3

0
0
.0
0

0
.0
0

8
.7

6
5
5
5
.4
3

0
.0

0

C
M

T
7
X

7
5

9
0
0
.1

2
0
.0
0

0
.1

0
4
.5

5
0
.1

2
0
.1

2
7
0
.3

0
0
.0

5
0
.1

9
2
4
.7

8
9
0
0
.1
2

0
.0

0

C
M

T
7
Y

7
5

9
0
0
.1

2
0
.0
0

0
.1

1
4
.8

7
0
.1

2
0
.1

2
6
9
.8

0
0
.0
0

0
.0

8
2
1
.8

6
9
0
0
.1
2

0
.0

0

C
M

T
8
X

1
0
0

8
6
5
.5

0
0
.0
0

0
.0
0

7
.3

6
0
.0
0

0
.0
0

2
2
4
.6

0
0
.0
0

0
.0
0

4
9
.2

4
8
6
5
.5
0

0
.0

0

C
M

T
8
Y

1
0
0

8
6
5
.5

0
0
.0
0

0
.0
0

7
.7

4
0
.0
0

0
.0
0

1
6
2
.7

0
0
.0
0

0
.0

8
4
9
.2

4
8
6
5
.5
0

0
.0

0

C
M

T
1
4
X

1
0
0

8
2
1
.7

5
0
.0
0

0
.0
0

5
.4

2
0
.0
0

0
.0
0

2
2
8
.5

0
0
.0
0

0
.0
0

2
2
.2

9
8
2
1
.7
5

0
.0

0

C
M

T
1
4
Y

1
0
0

8
2
1
.7

5
0
.0
0

0
.0
0

5
.4

8
0
.0
0

0
.0
0

2
0
4
.6

0
0
.0
0

0
.0
0

2
5
.6

4
8
2
1
.7
5

0
.0

0

C
M

T
1
3
X

1
2
0

1
5
4
2
.8

6
0
.0

0
0
.0

4
6
8
.7

2
0
.0

0
0
.0

2
3
3
2
.7

0
0
.0

1
0
.1

1
7
8
.7

6
1
5
4
1
.1
4

-0
.1

1

C
M

T
1
3
Y

1
2
0

1
5
4
2
.8

6
0
.0

0
0
.1

0
7
3
.4

9
0
.0

0
0
.0

0
3
7
5
.3

0
0
.0

0
0
.0

7
8
9
.0

0
1
5
4
1
.1
4

-0
.1

1

C
M

T
9
X

1
5
0

1
1
6
0
.6

8
0
.0
0

0
.0

9
6
4
.4

3
0
.0

5
0
.0

9
4
8
3
.4

0
0
.0
0

0
.2

3
1
1
6
.3

5
1
1
6
0
.6
8

0
.0

0

C
M

T
9
Y

1
5
0

1
1
6
0
.6

8
0
.0
0

0
.1

6
8
0
.8

6
0
.0

5
0
.0

8
4
7
7
.1

0
0
.0
0

0
.0

5
1
8
6
.3

7
1
1
6
0
.6
8

0
.0

0

C
M

T
1
0
X

1
9
9

1
3
7
3
.4

0
0
.0
0

0
.4

2
5
5
2
.8

1
1
.0

8
1
.1

2
1
1
6
8
.8

0
0
.0
0

1
.0

4
3
2
4
.9

4
1
3
7
3
.4
0

0
.0

0

C
M

T
1
0
Y

1
9
9

1
3
7
3
.4

0
0
.0
0

0
.2

6
5
4
7
.3

9
1
.0

8
1
.1

2
1
1
1
2
.1

0
0
.0
0

1
.1

1
2
4
3
.1

3
1
3
7
3
.4
0

0
.0

0

A
v
g
.

0
.0
0

0
.1
4

1
0
1
.8
0

0
.1
8

0
.1
9

3
5
7
.4
4

0
.0
0

0
.2
1

8
9
.1
5

-0
.0
2

P
ro

ce
ss

o
r

ty
p

e
i7

C
o
re

2
D

u
o

T
5
7
5
0

i5
-6

6
0
0

P
ro

ce
ss

o
r

sp
ee

d
2
.9

3
G

H
z

2
.0

0
G

H
z

3
.3

0
G

H
z

P
a
ss

m
a
rk

sc
o
re

1
2
9
7

6
7
8

2
0
9
8

tc
(s

)
6
2
.9
3
�

1
0

1
1
5
.5
1
�

1
0

8
9
.1
5
�

1
0

T
a
b

le
A

.4
:

D
et

ai
le

d
re

su
lt

s
of

A
L

N
S

-P
R

an
d

th
e

st
a
te

-o
f-

th
e-

a
rt

h
eu

ri
st

ic
s

fo
r

th
e

V
R

P
S

P
D

T
L

o
n

th
e

S
a
lh

i-
V

R
P

S
P

D
T

L
b

en
ch

m
a
rk

.

5

PKKG ALNS-PR

Inst. n BKS ∆b(%) ∆a (%) ta (s) fb ∆b(%) ∆a (%) ta (s)

CE51-5 50 570 0.00 0.00 98.39 570 0.00 0.00 1.69

CE76-7 75 735 0.00 0.00 250.75 728 -0.95 0.11 6.17

CE76-8 75 778 0.00 0.35 507.78 777 -0.13 -0.10 4.81

CE76-10 75 878 0.00 0.17 344.06 878 0.00 0.18 4.10

CE76-14 75 1091 0.00 0.11 321.56 1091 0.00 0.10 4.46

CE101-8 100 956 0.00 0.05 416.56 955 -0.10 0.25 10.03

CE101-14 100 1175 0.00 0.30 10264 1177 0.17 0.56 13.71

Avg. 0.00 0.14 323.18 -0.15 0.16 5.21

Processor type Core 2 Duo T5750 i5-6600

Processor speed 2.00 GHz 3.30 GHz

Passmark score 678 2098

tc(s) 104.44 � 10 5.21 � 10

Table A.5: Detailed results of ALNS-PR in comparison to PKKG on the VRPSPDTL benchmark Polat-
VRPSPDTL.

6

BKS WMZS ALNS-PR

Inst. n m f ∆m fb ∆b(%) t(s) ∆m fb ∆b(%) ta (s)

cdp101 100 11 992.88 0 992.88 0.00 36 0 976.04 -1.70 19.30

cdp102 100 10 955.31 0 955.31 0.00 38 0 941.49 -1.45 28.11

cdp103 100 10 897.65 0 958.66 6.80 34 0 892.98 -0.52 48.03

cdp104 100 10 878.93 0 944.73 7.49 35 0 871.40 -0.86 46.51

cdp105 100 11 983.10 0 989.86 0.69 37 -1 1053.12 7.12 15.97

cdp106 100 11 878.29 0 878.29 0.00 37 -1 967.71 10.18 17.36

cdp107 100 11 911.90 0 911.90 0.00 41 -1 987.64 8.31 18.06

cdp108 100 10 951.24 0 1063.73 11.83 39 0 932.88 -1.93 18.22

cdp109 100 10 940.49 0 947.90 0.79 21 0 910.95 -3.14 38.45

cdp201 100 3 591.56 0 591.56 0.00 86 0 591.56 0.00 24.37

cdp202 100 3 591.56 0 591.56 0.00 91 0 591.56 0.00 46.09

cdp203 100 3 591.17 0 591.17 0.00 88 0 591.17 0.00 44.19

cdp204 100 3 590.60 0 594.07 0.59 90 0 590.60 0.00 51.76

cdp205 100 3 588.88 0 588.88 0.00 90 0 588.88 0.00 36.35

cdp206 100 3 588.49 0 588.49 0.00 88 0 588.49 0.00 36.39

cdp207 100 3 588.29 0 588.29 0.00 85 0 588.29 0.00 39.83

cdp208 100 3 588.32 0 599.32 1.87 83 0 588.32 0.00 34.47

rdp101 100 19 1653.53 0 1660.98 0.45 43 0 1650.80 -0.17 22.86

rdp102 100 17 1488.04 0 1491.75 0.25 29 0 1486.12 -0.13 20.89

rdp103 100 14 1216.16 0 1226.77 0.87 41 -1 1297.01 6.65 17.83

rdp104 100 10 1000.65 0 1000.65 0.00 45 0 984.81 -1.58 28.40

rdp105 100 14 1399.81 0 1399.81 0.00 45 0 1377.11 -1.62 17.58

rdp106 100 12 1275.69 0 1275.69 0.00 37 0 1252.03 -1.85 27.54

rdp107 100 11 1082.92 0 1082.92 0.00 35 -1 1121.86 3.60 18.79

rdp108 100 10 962.48 0 962.48 0.00 41 -1 965.54 0.32 20.60

rdp109 100 12 1160.00 0 1181.92 1.89 46 -1 1194.73 2.99 16.08

rdp110 100 11 1106.52 0 1106.52 0.00 45 -1 1148.20 3.77 19.13

rdp111 100 11 1065.27 0 1073.62 0.78 41 -1 1098.84 3.15 22.15

rdp112 100 10 966.06 0 966.06 0.00 51 -1 1010.42 4.59 28.63

rdp201 100 4 1280.44 0 1286.55 0.48 84 0 1253.23 -2.12 33.44

rdp202 100 4 1100.92 0 1150.31 4.49 123 -1 1191.70 8.25 46.71

rdp203 100 3 950.79 0 997.84 4.95 102 0 946.28 -0.47 84.91

rdp204 100 2 848.01 0 848.01 0.00 120 0 833.09 -1.76 111.52

rdp205 100 3 1046.06 0 1046.06 0.00 116 0 994.43 -4.94 80.35

rdp206 100 3 959.94 0 959.94 0.00 134 0 913.68 -4.82 89.88

rdp207 100 2 899.82 0 899.82 0.00 85 0 890.61 -1.02 82.51

rdp208 100 2 739.06 0 739.06 0.00 127 0 726.82 -1.66 100.25

rdp209 100 3 930.26 0 947.80 1.89 111 0 909.16 -2.27 86.59

rdp210 100 3 983.75 0 1005.11 2.17 164 0 939.37 -4.51 82.84

rdp211 100 3 812.44 0 812.44 0.00 98 -1 904.44 11.32 85.87

rcdp101 100 15 1652.90 0 1659.59 0.40 47 -1 1776.58 7.48 10.59

rcdp102 100 13 1522.76 0 1522.76 0.00 41 -1 1583.62 4.00 19.19

rcdp103 100 11 1344.62 0 1344.62 0.00 45 0 1283.52 -4.54 29.08

rcdp104 100 10 1268.43 0 1268.43 0.00 47 0 1171.65 -7.63 22.57

rcdp105 100 14 1581.26 0 1581.54 0.02 46 0 1548.96 -2.04 16.95

rcdp106 100 13 1418.16 0 1418.16 0.00 41 -1 1392.47 -1.81 20.47

rcdp107 100 11 1360.17 0 1360.17 0.00 35 0 1255.06 -7.73 21.22

rcdp108 100 11 1169.57 0 1169.57 0.00 38 -1 1198.36 2.46 19.52

rcdp201 100 4 1513.72 0 1513.72 0.00 64 0 1406.94 -7.05 26.68

rcdp202 100 4 1211.12 0 1273.26 5.13 72 -1 1414.55 16.80 39.94

rcdp203 100 3 1123.58 0 1123.58 0.00 78 0 1050.64 -6.49 83.95

rcdp204 100 3 822.02 0 897.14 9.14 80 0 798.46 -2.87 94.85

rcdp205 100 4 1371.08 0 1371.08 0.00 62 0 1297.65 -5.36 33.58

rcdp206 100 3 1166.88 0 1166.88 0.00 66 0 1146.32 -1.76 59.36

rcdp207 100 3 1089.85 0 1089.85 0.00 75 0 1061.84 -2.57 79.06

rcdp208 100 3 862.89 0 862.89 0.00 73 0 828.14 -4.03 72.78

Avg. 1.12 65.93 -2.32 42.12
°

0 -17

Processor type 2 x Xeon E5-2650 i5-6600

Processor speed 2.00 GHz 3.30 GHz

Passmark score 1910 (15283/8) 2098

tc(s) 60.02 � 66 � ? 42.12 � 10

Table A.6: Detailed results of ALNS-PR in comparison to WMZS and the previous BKS on the VRPSPDTW
benchmark Wang-Medium.

7

WMZS ALNS-PR

Inst. n m fb t(s) m ∆m fb ∆b(%) ta (s)

C1 2 1 200 21 3169.52 62 20 -1 2846.20 -10.20 55.54

C1 4 1 400 42 8135.35 147 40 -2 7533.03 -7.40 220.13

C1 6 1 600 69 19720.65 257 63 -6 15594.21 -20.92 765.79

C1 8 1 800 88 32801.92 1054 82 -6 27035.71 -17.58 1495.17

C1 10 1 1000 110 52328.78 2418 102 -8 44764.64 -14.46 2253.40

C2 2 1 200 6 1972.97 112 6 0 1931.44 -2.10 194.73

C2 4 1 400 14 5085.08 279 12 -2 4144.84 -18.49 776.51

C2 6 1 600 20 9509.15 926 18 -2 7830.16 -17.66 1652.55

C2 8 1 800 27 14573.93 3636 24 -3 11759.05 -19.31 3022.47

C2 10 1 1000 33 23981.11 6529 30 -3 17088.50 -28.74 5009.45

R1 2 1 200 22 5083.39 89 20 -2 4849.80 -4.60 113.46

R1 4 1 400 42 12202.62 237 40 -2 10671.70 -12.55 537.22

R1 6 1 600 62 25729.28 581 59 -3 22306.17 -13.30 1211.12

R1 8 1 800 93 51949.49 1869 80 -13 39348.17 -24.26 3082.84

R1 10 1 1000 115 77993.35 4539 100 -15 58912.62 -24.46 4651.74

R2 2 1 200 5 4372.17 295 5 0 4042.67 -7.54 186.02

R2 4 1 400 9 14119.64 735 9 0 8952.24 -36.60 506.62

R2 6 1 600 13 27294.11 2439 13 0 17459.41 -36.03 1558.88

R2 8 1 800 19 48611.60 7663 18 -1 27270.04 -43.90 3429.95

R2 10 1 1000 22 67441.51 21379 22 0 42117.48 -37.55 5604.70

RC1 2 1 200 20 3865.18 81 19 -1 3652.18 -5.51 77.05

RC1 4 1 400 40 10036.82 193 38 -2 9772.56 -2.63 401.10

RC1 6 1 600 60 20535.26 733 57 -3 19679.75 -4.17 946.06

RC1 8 1 800 88 32801.92 1620 75 -13 38431.09 17.16 2234.79

RC1 10 1 1000 102 66883.49 3483 93 -9 63953.66 -4.38 4325.54

RC2 2 1 200 4 2662.75 216 4 0 2021.49 -24.08 338.41

RC2 4 1 400 13 7229.22 791 12 -1 6621.94 -8.40 681.44

RC2 6 1 600 20 22837.36 2860 16 -4 12693.19 -44.42 2607.91

RC2 8 1 800 22* 39375.78* 6026 60 38 26652.10 -32.31 2827.44

RC2 10 1 1000 29* 61473.68* 13793 75 46 40643.56 -33.88 6460.91

Avg. 2834.73 -16.93 1907.63
°

-102

Processor type 2 � Xeon E5-2650 i5-6600

Processor speed 2.00 GHz 3.30 GHz

Passmark score 1910 (15283/8) 2098

tc(s) 2580.71 � 66 � ? 1907.63 � 10

Table A.7: Detailed results of ALNS-PR in comparison to WMZS on the VRPSPDTW benchmark Wang-
Large.

8

N
a
g
y
1

N
a
g
y
2

N
a
g
y
3

A
L
N

S
-P

R
A

L
N

S
-P

R
A

L
N

S
-P

R

In
st

.
n

B
K

S
m

n
d

f
b

∆
b
(%

)
ta

(s
)

B
K

S
m

n
d

f
b

∆
b
(%

)
ta

(s
)

B
K

S
m

n
d

f
b

∆
b
(%

)
ta

(s
)

C
M

T
1
X

5
0

4
7
0

3
0

4
6
8

-0
.4

3
9
.1

6
1
1
3
8

1
8

1
0

1
1
3
2

-0
.5

3
6
.2

6
1
8
2
7

3
2

2
5

1
8
2
7

0
.0

0
3
.2

4

C
M

T
1
Y

5
0

4
5
9

3
0

4
5
9

0
.0

0
8
.3

5
1
0
5
8

1
7

1
1

1
0
5
4

-0
.3

8
4
.8

0
1
8
4
1

3
2

3
1

1
8
3
8

-0
.1

6
3
.8

5

C
M

T
2
X

7
5

6
8
4

6
1

6
7
4

-1
.4

6
2
2
.0

1
1
9
5
2

3
4

1
7

1
9
6
8

0
.8

2
1
2
.0

8
2
7
4
2

4
8

3
8

2
7
3
8

-0
.1

5
8
.4

8

C
M

T
2
Y

7
5

6
5
0

6
2

6
5
1

0
.1

5
1
9
.7

5
1
8
2
0

3
0

2
2

1
8
2
2

0
.1

1
1
2
.6

8
2
8
0
9

4
7

5
3

2
7
9
9

-0
.3

6
1
0
.1

1

C
M

T
3
X

1
0
0

7
1
3

5
1

7
0
7

-0
.8

4
4
8
.7

9
1
9
4
6

2
8

2
6

1
9
3
8

-0
.4

1
3
1
.7

8
3
4
1
2

5
7

4
1

3
3
9
9

-0
.3

8
1
8
.9

7

C
M

T
3
Y

1
0
0

7
0
5

4
0

6
9
1

-1
.9

9
5
1
.5

0
1
8
0
5

2
7

2
5

1
8
1
8

0
.7

2
2
7
.8

2
3
4
2
5

5
8

4
9

3
4
1
5

-0
.2

9
1
8
.3

3

C
M

T
4
X

1
5
0

8
6
2

7
1

8
4
4

-2
.0

9
1
1
9
.8

5
2
7
4
2

4
3

5
5

2
7
1
4

-1
.0

2
1
0
2
.5

8
4
9
3
3

8
7

7
0

4
9
0
5

-0
.5

7
5
9
.5

0

C
M

T
4
Y

1
5
0

8
3
1

7
0

8
2
0

-1
.3

2
1
0
4
.7

3
2
5
4
8

4
0

3
6

2
5
2
5

-0
.9

0
7
6
.5

7
4
9
4
7

8
5

8
7

4
8
9
8

-0
.9

9
5
1
.1

5

C
M

T
5
X

1
9
9

1
0
6
2

1
0

1
6

1
0
1
5

-4
.4

3
2
0
3
.0

4
3
6
7
2

6
1

6
7

3
6
2
4

-1
.3

1
1
4
6
.3

6
6
4
4
9

1
1
9

1
0
9

6
3
8
8

-0
.9

5
1
0
0
.3

0

C
M

T
5
Y

1
9
9

9
8
2

9
0

9
6
6

-1
.6

3
1
8
2
.7

1
3
2
9
7

5
6

4
7

3
2
7
7

-0
.6

1
1
3
6
.2

8
6
5
6
8

1
1
6

1
2
9

6
4
3
0

-2
.1

0
1
1
5
.7

3

C
M

T
6
X

5
0

5
4
8

6
0

5
4
8

0
.0

0
5
.0

1
1
1
3
8

1
8

1
2

1
1
3
2

-0
.5

3
6
.1

3
1
8
2
7

3
2

2
5

1
8
2
7

0
.0

0
3
.2

7

C
M

T
6
Y

5
0

5
4
8

6
0

5
4
8

0
.0

0
5
.7

8
1
0
5
8

1
7

6
1
0
5
5

-0
.2

8
5
.6

0
1
8
4
1

3
1

3
2

1
8
3
2

-0
.4

9
4
.1

5

C
M

T
7
X

7
5

8
9
7

1
1

0
8
9
5

-0
.2

2
9
.2

1
1
9
5
2

3
4

1
7

1
9
7
2

1
.0

2
1
3
.1

6
2
7
4
2

4
8

4
0

2
7
3
8

-0
.1

5
8
.4

1

C
M

T
7
Y

7
5

8
9
7

1
1

0
8
9
4

-0
.3

3
9
.6

6
1
8
2
0

3
0

1
8

1
8
3
6

0
.8

8
1
4
.7

3
2
8
0
9

4
8

5
0

2
8
0
1

-0
.2

8
1
0
.0

7

C
M

T
8
X

1
0
0

8
5
6

9
0

8
4
8

-0
.9

3
2
6
.9

1
1
9
4
6

2
9

2
8

1
9
1
3

-1
.7

0
3
5
.4

4
3
4
1
2

5
8

4
3

3
4
0
0

-0
.3

5
2
2
.3

5

C
M

T
8
Y

1
0
0

8
5
6

9
0

8
4
4

-1
.4

0
2
5
.9

2
1
8
0
5

2
7

2
3

1
8
1
5

0
.5

5
2
7
.7

0
3
4
2
5

5
8

4
7

3
4
1
6

-0
.2

6
2
0
.6

9

C
M

T
9
X

1
5
0

1
1
4
2

1
4

0
1
1
4
3

0
.0

9
6
1
.5

7
2
7
4
2

4
4

5
3

2
7
1
3

-1
.0

6
7
8
.9

1
4
9
3
3

8
7

6
8

4
9
0
8

-0
.5

1
6
5
.6

2

C
M

T
9
Y

1
5
0

1
1
4
3

1
4

0
1
1
4
3

0
.0

0
5
7
.2

2
2
5
4
8

4
1

4
3

2
5
2
4

-0
.9

4
6
8
.5

9
4
9
4
7

8
6

8
6

4
9
0
7

-0
.8

1
5
3
.9

2

C
M

T
1
0
X

1
9
9

1
3
7
2

1
7

1
1
3
5
5

-1
.2

4
1
1
5
.7

6
3
6
7
2

6
1

8
2

3
6
0
9

-1
.7

2
1
6
2
.9

3
6
4
4
9

1
1
8

1
0
9

6
3
9
8

-0
.7

9
1
0
3
.2

4

C
M

T
1
0
Y

1
9
9

1
3
6
6

1
7

0
1
3
5
3

-0
.9

5
1
3
4
.7

7
3
2
9
7

5
6

4
9

3
2
8
8

-0
.2

7
1
3
1
.4

6
6
5
6
8

1
1
5

1
2
8

6
4
1
9

-2
.2

7
1
2
1
.9

5

C
M

T
1
1
X

1
2
0

8
7
3

4
4

8
1
9

-6
.1

9
1
1
8
.5

7
3
6
3
3

2
9

3
8

3
5
7
2

-1
.6

8
6
4
.0

9
7
4
2
7

6
8

6
2

7
3
2
1

-1
.4

3
3
3
.4

3

C
M

T
1
1
Y

1
2
0

8
2
6

4
6

7
6
4

-7
.5

1
1
0
8
.9

7
3
1
7
8

2
8

8
3
1
9
6

0
.5

7
2
2
.2

8
7
4
9
9

6
8

6
7

7
4
6
9

-0
.4

0
2
5
.2

2

C
M

T
1
2
X

1
0
0

6
7
2

5
4

6
4
6

-3
.8

7
5
4
.4

4
2
4
2
6

3
2

3
3

2
4
0
8

-0
.7

4
3
5
.4

6
3
9
5
0

6
0

5
2

3
9
2
5

-0
.6

3
1
6
.5

9

C
M

T
1
2
Y

1
0
0

6
3
2

5
0

6
2
7

-0
.7

9
4
1
.1

2
2
1
6
7

3
1

2
4

2
1
6
1

-0
.2

8
1
9
.9

9
3
8
9
7

5
9

6
3

3
8
9
6

-0
.0

3
1
6
.7

6

C
M

T
1
3
X

1
2
0

1
5
4
6

1
1

0
1
5
2
4

-1
.4

2
3
5
.5

1
3
6
3
3

2
9

4
8

3
5
6
9

-1
.7

6
5
8
.7

0
7
4
2
7

6
8

5
8

7
3
2
5

-1
.3

7
2
9
.7

4

C
M

T
1
3
Y

1
2
0

1
5
4
2

1
1

0
1
5
2
4

-1
.1

7
2
8
.6

9
3
1
7
8

2
8

1
0

3
1
9
8

0
.6

3
2
2
.4

2
7
4
9
9

6
9

6
6

7
4
5
6

-0
.5

7
2
5
.4

0

C
M

T
1
4
X

1
0
0

8
2
1

1
0

0
8
2
1

0
.0

0
1
7
.1

3
2
4
2
6

3
2

3
4

2
4
2
0

-0
.2

5
2
9
.1

6
3
9
5
0

6
0

5
4

3
9
2
5

-0
.6

3
1
6
.3

4

C
M

T
1
4
Y

1
0
0

8
1
9

1
0

0
8
2
1

0
.2

4
1
6
.2

0
2
1
6
7

3
1

2
3

2
1
6
1

-0
.2

8
1
9
.0

6
3
8
9
7

5
9

6
1

3
8
9
5

-0
.0

5
1
6
.8

3

A
v
g
.

-1
.4

2
5
8
.6

5
-0

.4
0

4
9
.0

4
-0

.6
1

3
5
.1

3
°

2
3
4

3
6

9
5
1

8
6
5

1
8
7
3

1
7
4
3

T
a
b

le
A

.8
:

D
et

ai
le

d
re

su
lt

s
o
f

A
L

N
S

-P
R

o
n

th
e

V
R

P
D

D
P

b
en

ch
m

a
rk

s
N

a
g
y
1
,

N
a
g
y
2
,

a
n

d
N

a
g
y
3
.

9

P ALNS-PR

Inst. n BKS ∆b(%) tab(s) nd fb ∆b(%) ta (s)

SCA3-0 50 635.62 0.00 8.59 2 629.84 -0.91 27.31

SCA3-1 50 697.84 0.00 8.07 0 697.84 0.00 56.29

SCA3-2 50 659.34 0.00 12.33 0 659.34 0.00 40.64

SCA3-3 50 680.04 0.00 9.36 0 680.04 0.00 38.88

SCA3-4 50 690.50 0.00 7.14 0 690.50 0.00 27.37

SCA3-5 50 659.90 0.00 9.69 0 659.90 0.00 31.04

SCA3-6 50 651.09 0.00 7.21 0 651.09 0.00 32.71

SCA3-7 50 659.17 0.00 9.33 0 659.17 0.00 32.12

SCA3-8 50 719.47 0.00 8.93 0 719.47 0.00 26.19

SCA3-9 50 681.00 0.00 9.63 0 681.00 0.00 28.49

SCA8-0 50 961.50 0.00 9.38 0 961.50 0.00 18.18

SCA8-1 50 1049.65 0.00 9.44 0 1049.65 0.00 17.66

SCA8-2 50 1039.64 0.00 11.62 0 1039.64 0.00 19.82

SCA8-3 50 979.13 0.00 52.08 1 979.13 0.00 16.92

SCA8-4 50 1065.49 0.00 10.20 0 1065.49 0.00 18.67

SCA8-5 50 1027.08 0.00 13.02 1 1022.02 -0.49 15.31

SCA8-6 50 969.50 0.00 69.31 1 969.50 0.00 17.59

SCA8-7 50 1051.28 0.00 17.58 3 1047.78 -0.33 17.85

SCA8-8 50 1071.18 0.00 12.71 0 1071.18 0.00 17.31

SCA8-9 50 1057.26 0.00 100.79 1 1057.26 0.00 13.91

CON3-0 50 616.52 0.00 9.18 0 616.52 0.00 48.67

CON3-1 50 554.47 0.00 6.01 0 554.47 0.00 40.44

CON3-2 50 518.00 0.00 14.50 0 518.00 0.00 64.45

CON3-3 50 591.19 0.00 11.04 0 591.19 0.00 57.85

CON3-4 50 588.79 0.00 4.37 0 588.79 0.00 53.80

CON3-5 50 563.70 0.00 9.26 0 563.70 0.00 60.18

CON3-6 50 499.05 0.00 13.15 1 498.55 -0.10 62.10

CON3-7 50 576.48 0.00 8.43 0 576.48 0.00 47.41

CON3-8 50 523.05 0.00 6.61 1 521.71 -0.26 59.11

CON3-9 50 578.25 0.00 9.12 0 578.25 0.00 57.71

CON8-0 50 857.12 0.00 96.91 1 857.12 0.00 31.63

CON8-1 50 739.44 0.00 110.83 1 739.44 0.00 24.77

CON8-2 50 706.51 0.00 52.36 1 706.51 0.00 28.29

CON8-3 50 811.07 0.00 10.82 1 808.66 -0.30 39.34

CON8-4 50 771.30 0.00 40.25 1 771.30 0.00 26.86

CON8-5 50 754.88 0.00 7.81 0 754.88 0.00 31.99

CON8-6 50 678.92 0.00 6.10 0 678.92 0.00 29.12

CON8-7 50 811.96 0.00 11.40 0 811.96 0.00 31.33

CON8-8 50 766.99 0.00 31.09 1 766.99 0.00 29.68

CON8-9 50 797.69 0.00 102.94 6 796.40 -0.16 53.76

Avg. 0.00 23.96 -0.06 34.82
°

23

Processor type Xeon E5420 i5-6600

Processor speed 2.50 GHz 3.30 GHz

Passmark score 1073 2098

tc(s) 12.25 � 6 � ? 34.82 � 10

Table A.9: Detailed results of ALNS-PR in comparsion to P on the VRPDDP benchmark Polat-VRPDDP1.

10

P ALNS-PR

Inst. n BKS ∆b(%) tab(s) nd fb ∆b(%) ta (s)

r101 100 1009.95 0.00 67.04 0 1009.95 0.00 122.14

r201 100 666.20 0.00 59.58 0 666.20 0.00 321.07

c101 100 1220.18 0.00 26.42 0 1220.99 0.07 132.86

c201 100 662.07 0.00 30.78 0 662.07 0.00 148.76

rc101 100 1058.94 0.00 33.39 2 1057.40 -0.15 126.81

rc201 100 672.92 0.00 32.62 0 672.92 0.00 211.76

R1 2 1 200 3353.80 0.04 1780.00 5 3340.19 -0.41 523.52

R2 2 1 200 1665.58 0.00 1401.84 0 1665.58 0.00 1248.30

C1 2 1 200 3628.51 0.04 4082.55 0 3632.31 0.10 410.28

C2 2 1 200 1726.59 0.00 1123.42 0 1726.59 0.00 1114.79

RC1 2 1 200 3303.70 0.04 2168.18 5 3304.81 0.03 457.95

RC2 2 1 200 1560.00 0.00 1074.29 0 1560.00 0.00 1635.74

Avg. 0.01 990.01 -0.03 537.83
°

12

Processor type Xeon E5420 i5-6600

Processor speed 2.50 GHz 3.30 GHz

Passmark score 1073 2098

tc(s) 506.33 � 6 � ? 537.83 � 10

Table A.10: Detailed results of ALNS-PR in comparison to P on the VRPDDP benchmark Polat-VRPDDP2.

11

